
So far in this course : assumption is that adversary is classical .
How do things change if adversaries are gum

? We won't
go
into detail but will state main results :

Grogorithy : Given black- box access to a function f :[N] → {0,13
,
Grover's algorithm finds an ✗ C- [N] such that

f- G) = 1 by making 0 (TN) queries to f.
"

searching an unsorted database of size N in time 0 (Tn)
.

"

-

Classically : Searching an unstructured database of size N requires time A(N)
- cannot do better than a linear

scan .

-

Quantum: Grover's algorithm is tight for unstructured search
. Any quantum algorithm for the unstructured search

problem requires making A(TN) queries (to the function /database).
⇒ Quantum computes provide a quadr-at.cn speedup for unstructured search

,
and more broadly, function

inversion
.

Implicationsincryp-tograph.li Consider a one-way function over a 128 - bit domain . The task of inverting a one-way function is to

find ✗ C- {0,13128 such that f-G) =y for some fixed target valve f. Exhaustive search would take

time ≈ 2
'"

on a classical computer , but using Grover's algorithm, can perform in time ≈ 52128=26.4

⇒ For symmetric cryptography, need to doubts key-sizes to maintain same level of security (unless there are new quantum
attacks on the underlying construction itself .

⇒ Use AES-256 instead of AES-128 (n¥ a significant change !)

similar algorithm can be applied to obtain a quantum collision- finding algorithm that runs in time ÑÑ where N is the

size of the domain (
compare to

TN for the best classic algorithm)
↳ Instead of using SHA -256

, use
SHA -384 (¥-1 a significant change)

↳ The quantum algorithm require a large amount of space , so not clear that this is a significant threat, but even if it were
,

using hash functions with 384- bits of output suffices for security

MaÉy : symmetric cryptography mostly unaffected by quantum computers
~

generally just require a modest increase in key size
↳ e.g. , symmetric encryption, MAC,s, authenticated encryption



Story more complicated for public-key primitives :
-

Simon's algorithm and Shor's algorithm provide polynomial-time algorithms for solving discrete log (in any group with an efficiently -

computable group operation
and for factoring

-

Both algorithms rely on period finding (and more broadly , on solving the hidden subgroup problem)
Intuition for discrete log algorith (as a period finding problem) :

- Let (g , h=g✗ ) be the discrete log instance in a group of prime order p
-

Let f : Zp ✗ Ep
→ 6 be the function

5- (x ,y1=g×h_Y
-

By construction
,

1- (✗+ a. y + 1) = g✗ᵗ✗h
-

Y
- '
= g✗hTg✗h

"
=

g
✗ hit = f(× , g)

-

Thus
,
the element (2

,
-1) is the period of f

,
so using Shor's algorithm, we can efficient compute (4-1) from (

g.h),

which yields the discrete log of h

Thus , if large scale quantum computers come online, we will need new cryptographic assumptions for our public-key primitives
↳ All the algebraic assumptions we have considered so for (e.g. , discrete log , factoring) are broken

t~ais-iisth.es#t? - Lots of
progress

in building quantum computers recently by both academia and industry leg, see initiatives

by Google , IBM ,
etc

.
)

-

To run Shor's algorithm to factor a 2048 - bit RSA modulus
,
estimated to need a quantum computer with

≈ 10000 logical qubits (analog of a bit in classical computers)

↳ With
quantum error correction

,
this requires ≥ 10 million physical qubits to realize

↳
To-day : machines with 10s of physical qubits , so still very far from being able to run Shor's

algorithm
-

Optimistic estimate : At least 20 -30 years away

IET? Quantum computers would break existing key - exchange and signature schemes

-

Signatures : Future adversaries would be able to forge signatures under today's public keys , so if quantum computers come online
,
we

can switch to and only use post-quantum schemes

-Key-E✗change_ : Future adversaries can break confidentiality of today's messages (i.e. , we lose forward secrecy)
- this is problematic in

many scenarios (e.g., businesses want trade secrets to remain hidden for 50 years)

Eve: will just focus on getting post-quantum signatures (will not discuss post - quantum key exchange)

/ General approach for post
-

quantum cryptography : base hardness on assumptions believed to be hard on quantum
computers (e.g. , lattice

- based cryptography, isogamy
-based cryptography

)}
For digital signatures, we will show that Owfs ⇒ digital signatures
↳

Signatures can be based on symmetric primitives , so gives one approach to post -quantum signatures



*signatures: Let fix -> Y be a overway function.

~
length of message (M

=90,13")
-

Setup (1*, 14: Sample Xi,b(X Victr], be90,3 and compute yi,b>f(x) Vit [en), 6790,13
Set

sk = GoyaoM plu= 810 820... youa

yx Y2 ... Yui

-90,13
-

Sign (sk, m): Output (Xcm, ..., Xn,mn)
-

Verify (vk, m. of: Output 1 if VitIn), f(ximi) = Yim; and 0 otherwise

#

orem. If it is one-way, then Camport signatures are secure one-time signatures (i.e., where adversary can only make I

signing query).

H

rof. Suppose A is a one-time signature adversary. We construct is for of as follows:

1. Algorithm A receives challenge y
= f(x) where XX from challenger

2.Choose i* (n), b** (0,13 to
program challengeSample Xib*X, yib5f(xib) for (i,b) * (i.b*).

Set pk
=(y,0,y,, . . ., yn.0,y(i)

3.Send pk to B. If B makes signing query on m = m,..., mn;

·>

If mix = b*, then about.

-

Otherwise, reply with (x1m, ..., Xn,ma)
4. After A outputs a forgery (m*. **), if m** *b*, then about. Otherwise, output fix.

By construction, M.x=b* with probability Yn. Thus it A succeed with probability 2, Bsucceeds with prob. */2n

↓two signatures allow recovering secret key!
*ations: One-time only will fix later!]

Long public keys, secret keys, and signatures
-

Compose with CRHI to get poly(x) - size parameters (independent of message length)
-> secret key can be derived from PRG (e.g., just x bits)
- Public key can also be shortened to 2x bits

Many combinatoric tricks to reduce signature size

One-time signatures are very fast (only needs stronopotography
-Very useful in streaming setting:each packet in stream should be signed, but expensive to do so

-Instead: include pk for one-time signature in first packet
sign first packet using standard signature algorithm (public key
each packet includes OTS public key for next packet:

(Mo.0k,),0 -> (m,,r(c),0t(M2,r(s),0,,.
↑

↑

signed using
many-time signature

secret key for UK
signedwingsecret lay by gassigned using



Stateful many-time signatures from one-time signatures:

=>

dea: use a tree of one-time signatures:

only uk needed -every node is associated with a key-pair for
to verify signatures
sk

an OTS scheme

vko,sko-\vk,,sk
-> each signing key used to sign verification keys
of its children

1/
->

signing key for leaf nodes used to sign messages

-each leaf can only be used to sign we

~Koo,skoo vko,sko, Ukosko UK,, sky message
- need to keep track of which nodes

have been used (ateful signature)
#mple: Signing message me using (vkoo, skoo):

->

to - Sign Isk, rkollvki) To verify, check

-500 5 Sign (sko, VkoollUko Verify (vk, vKollok,00) = 1
-

On - Sign (skoo, m) Verify (vko, rkoollvkon, 000) = 1
-Output (UKollok, UKoollvkol, 50,000, 0m) Verify (vk00, n) = 1

Only root uk needed here, all other keys included in a

Security (Intuition): - Keys for internal nodes only used to sign single message (verification keys of children)
· As long as leaf node never reused, then leaves are also only used once

-security now reduces to one-time security of signature scheme

How to remove state?
- Consider a tree with 24 leaves and choose leaf at random for signing
- If we sign poly(x) messages, there will not be a collision in the leaf with I-negl(x) probability
-blem: Signing key is exponential (need to store O(2*) signing keys the
Station: Derive signing keys from a PRF ~randomness to key-generation

(vki, sk:) x Keyber(1Y; PRF(k,i)) algorithm

I node index
↑

arginany key
sk,A-public vk

O for metime signature
to sign, choose random leaf.

Derive all (ski,rk:) along path. & (sk,,rk) - Keyber(1*; PRF(k, 11)
Each node along path signs O ②g

verification node associated

with children.- -
heat node signsof ⑥ O ⑭
message.

Signature contains complete (ski0,0K.) * Keyber (1); PRECK, 101
validation path from root

to leaf and signature of leaf on message.

Every internal rode still
signs only one message.


