For pablic-key cryptography, we will need new assumptions to get post-quantam security
We will see a brief flavor today - lattice assumptions
Learning isth Errors (LWE): The LWE problem is defined with respect to lattice parameters n, m, q, x, where X is an error distribution over \mathbb{Z}_{q} (oftentimes, this is a discrete Gawsion distribution over \mathbb{Z}_{q}). The ($W E_{n, n i x} x$ assumption states that for a random choice $A \leftarrow \mathbb{Z}_{q}^{n \times m}, S^{R} \mathbb{Z}_{\hat{q}}^{n}, e \leftarrow X_{1}^{m}$, the following two distributions are computational indistrayuashable:

$$
\left(A, s^{\top} A+e^{\top}\right) \approx(A, r)
$$

where $r \stackrel{R}{\mathbb{Z}_{q}^{m}}$.
Symmetric encryption from LWE (for binary-valued messages) [Regex]]
Setup $\left(1^{\lambda}\right):$ Sample $s^{\kappa} \mathbb{Z}_{\hat{q}}$.
Encrypt $(s, \mu):$, to ins Sample $a \in \mathbb{R}_{q}^{n}$ and $e \leftarrow x$. Output $\left(a, s^{\top} a+e+\mu \cdot\left\lfloor\left.\frac{q}{2} \right\rvert\,\right)\right.$.
$\operatorname{Decxpt}(s, c t)$: Output $\frac{\left[c t_{2}-s^{\top} c t_{1}\right]_{2}}{\begin{array}{c}\text { "rounding } \\ \text { operation" }\end{array}}$

$$
\underset{ }{\lfloor x\rangle_{2}}= \begin{cases}0 & \text { if }-\frac{9}{4} \leqslant x<\frac{9}{4} \\ 1 & \text { otherwise }\end{cases}
$$

Visually:
take $x \in \mathbb{Z}_{f}$ to be representative between $\frac{-q}{2}$ and $\frac{q}{2}$

Correctness:

$$
\begin{aligned}
c t_{2}-s^{\top} c t_{1} & =s^{\top} a+e+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor-s^{\top} a \\
& =\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor+e
\end{aligned}
$$

if |e|< $\frac{9}{4}$, then decryption recovers the correct bit
Security: By the LWE n, q, x assumption, $\left(a, s^{\top} a+e\right) \approx(a, r)$

$\frac{9}{2}$ "encoding of message 1
(message enerpeted in "mast syafifient bits" of the iplectext) \longrightarrow will see variant in HWS

$$
\rightarrow \text { will see variant in HWS }
$$

$$
\left(a, s^{\top} a+e+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor\right) \stackrel{i}{\approx}\left(a, r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
$$

$\tau_{r}{ }^{R} \mathbb{Z}_{q}$: one -tine pad encryption of the message μ
Observe: this exemption scheme is additively homomesphic (over $\left.\mathbb{Z}_{2}\right)$:

$$
\frac{\left(a_{1}, s^{\top} a_{1}+e_{1}+\mu_{1} \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)}{\left(a_{2}, s^{\top} a_{2}+e_{2}+\mu_{2} \cdot\left(\frac{q}{2}\right\rfloor\right)} \Rightarrow\left(a_{1}+a_{2}, s^{\top}\left(a_{1}+a_{2}\right)+\left(e_{1}+e_{2}\right)+\left(\mu_{1}+\mu_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
$$

decryption then computes

$$
\left(\mu_{1}+\mu_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor+e_{1}+e_{2}
$$

which when rounded yields $\mu_{1}+\mu_{2}(\bmod 2)$ provided that $\left|e_{1}+e_{2}+1\right|<\frac{9}{4}$

Idea: We will include encryptions of 0 in the public key and refresh ciphertexts by taking a subset sum of encryptions of 0 :
Setup:

$$
\begin{array}{llr}
A \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m} & & \text { output } p k=\left(A, b^{\top}\right) \\
s \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n} & b^{\top} \leftarrow s^{\top} A+e^{\top} & s k=s
\end{array}
$$

Rege's public-key
$e \leftarrow x^{m} \quad \leftarrow$ can be viewed as m encryptions of 0 under the symmetric scheme with secret key s encryption scheme

Encrypt $(p k, \mu)$: sample $r \gtrless^{2}\{0,1\}^{m}$

$$
\text { output }\left(A r, b^{\top} r+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor\right)
$$

Decrypt (sk ,ct): output $\left[c t_{2}-s^{\top} c t_{1}\right]_{2}$
Correctness:

$$
\begin{aligned}
c t_{2}-s^{\top} c t_{1}=b^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-s^{\top} A r & =s^{\top} A r+e^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-s^{\top} A r \\
& =\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor+e^{\top} r
\end{aligned}
$$

if $\left|e^{T} r\right|<\frac{9}{4}$, then decryption succeeds (since e is small and r is binary, $e^{T} r$ is not large : $\left|e^{T} r\right|<m\|e\|\|r\|=m\|e\|$)

Security (Sketch): Under LWE assumption public key

$$
\left(A, s^{\top} A+e^{\top}\right) \approx(A, u)^{\prime} \text { where } A \stackrel{R}{\curvearrowleft} \mathbb{Z}_{q}^{n \times m}, u^{R} \mathbb{Z}_{q}^{m}
$$

By the "leftover hash lemma," if we sample $A \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m}, a \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n}, r \in\{0,1\}^{m}$ where $m>2 n \log q$
$\left(\right.$ Ar, $\left.u^{\top} r\right) \approx(v, w)$ where $v \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n}$ and $w^{R} \mathbb{Z}_{q}$
$\Rightarrow b^{\top} r$ in ciphertext functions as a one-time pad

So far... we have developed public-key encryption; what about key agreement?

Alice

Bob

\rightarrow compute $S^{\prime} B+E^{\prime \prime}$ and "round"

Under the LWE assumption:
$(A, A S+E) \approx U$ where $U \stackrel{R}{\mathbb{R}} \mathbb{Z}_{q}^{n \times m}$ [note: requires that $L W E$ holds even if S is sampled from error
\rightarrow shared bey then derived by $S^{\prime} B+E^{\prime \prime} \rightarrow$ by $L W E,\left(B, S^{\prime} B+E^{\prime \prime}\right) \approx\left(B, U^{\prime}\right)$ distribution]
\rightarrow shared hey is derived from random matrix (similar to Diffie-Hellman, the key material is hashed to derive a symmetric key)

Practical considerations:

- Key reconciliation: presence of noise means Alice and Bob may end up with inconsistent keys Bob sends a "hint" with his message to reconcile any errors and ensure exact key agreement
- Message size: large matrix A is uniform - can be derived from a short seed (using PRG)
\rightarrow justifiable using the
Above construction relies on security of LWE where the secret key is sampled from error distribution random oracle model
\rightarrow This is LWE in "Hermite normal form" and is just as hard as standard LWE

LWE is a versatile assumption: yields key exchange, pablic-key cryptography, signatures also enables advanced primitives like

- fully homomosphic encryption: arbitrary computation on ciplertorts
- identity-bared encryption: pablic-key encryption scheme where puble keys can be arbitrary strings
- functional encryption: fine-grained control of data access
- and many more!
\rightarrow also plausibly post-quantum resilient:

