Definition: An encryption scheme TISE = (Encrypt, Decrypt) is secure against chosen-plaintext attacks (CPA-secure) if for all efficient adversaries A:

CPARLU[A, TISE] =
$$\Pr[W_0 = 1] - \Pr[W_1 = 1] = real.$$

challenger

Claim. A stream cipher is not CPA-secure.

Proof. Consider the following adversary:

	Pe (ar, 2		
adversary	challenger		
choose mo, m, EM	5 e {0,132	$P_{r}[b'=1 b=0]=0$	since $c' = m_0 \oplus G(s) = c$
where mo \$ m1		$P_{c}[b' = 1 b = 1] = 1$	since c' = m, ⊕ G(s) ≠ C
$\underline{m_{o}, m_{o}}$	\rightarrow	=> CRAAdu (A, TISE] = 1	
$\epsilon = m_0 \oplus G(s)$			

$$m_{\bullet}, m_{I}$$

 $c^{t} = m_{b} \oplus G(s)$

output 0 if c=c' output 1 if c≠c'

Observe: Above attack works for any deterministic encryption scheme.

=> CPA-secure encryption must be <u>randomized</u>!

To be reusable, cannot be deterministic. Encrypting the same message twice should not reveal that identical messages were encrypted.

To build a CPA-secure encryption scheme, we will use a "block cipher"

"Block cipher is an invertible keyed function that takes a block of n input bits and produces a block of n output bits T Examples include 3DES (key size 168 bits, block size 64 bits)

AES (key size 128 bits, block size 128 bits) block ciphers Will define block ciphers aborractly first: pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) L> General idea: PRFs behave like random functions

PRPs behave like random permutations

Definition.	A function F	: K × X →	I with key-space	K, domain X, and runge y is a pseudorandom function (PRF) if	fer all
	efficient adve	rsaries A,	Wo - W1 = neg1.,	where Wb is the probability the adversary outputs 2 in the following	m
	experiment:			be {0,1}	
		adversary		challenger	
				$k \stackrel{\text{e}}{\leftarrow} K_{3} \stackrel{\text{e}}{\leftarrow} F(k, \cdot) \text{if } b=0$	
				f & Funs (x, y] if b = 1	
			$\frac{\chi}{f(x)}$	the space of all possible functions from X -> Y	

$$\frac{f(x)}{f(x)} \xrightarrow{G} \frac{f(x)}{f(x)} \xrightarrow{G} \frac{f(x)}{f(x$$

↓ 6'€ {0,1}}

Intuitively: input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally-bounded $|K| = 2^{168} |F_{uns}[X, y]| = (2^{64})^{(2^{64})}$ $|K| = 2^{128} |F_{uns}[X, y]| = (2^{128})^{(2^{128})}$ adversary) 3DES: ${\{0,1\}}^{168} \times {\{0,1\}}^{64} \rightarrow {\{0,1\}}^{64}$ AES: ${\{0,1\}}^{128} \times {\{0,1\}}^{123} \rightarrow {\{0,1\}}^{123}$) space of random functions is exponentially lager than key-speced

Definition: A function $F: K \times X \rightarrow X$ is a greader and permutation (PRP) of

- for all keys k, $F(k, \cdot)$ is a permutation and moreover, there exists an efficient algorithm to compute $F^{-1}(k, \cdot):$

$$\forall k \in K : \forall x \in X : F^{-1}(k, F(k, x)) = \gamma$$

- for $k \stackrel{P}{=} K$, the input-output behavior of $F(k, \cdot)$ is computationally indistinguishable from $f(\cdot)$ where $f \stackrel{P}{=} Perm[X]$ and Perm[X] is the set of all permutations on X (analogous to PRF security)

Note: a block cipher is another term for PRP (just like stream ciphers are PRGs)

Observe that a block optic can be used to construct a TRG:
F:
$$(a_1^{1/2} (a_1^{1/2} \rightarrow (a_1)^{1/2})$$
 be a block optic
Define G: $(a_1^{1/2} \rightarrow (a_1)^{1/2})$ be a block optic
G(b) = F(b, 1) ||F(b, 2)|| ·· ||F(b, 1)
There is a grant of the lapse as an e-bit prints
we can PRF above
(just require that $n > b_{1/2}$)
There is not a secure PRF.
Support are a show the compation if G is not a secure PRG. then F is not a secure PRF.
Support are for the matrix if G is not a secure PRG. then F is not a secure PRF.
Support are the formed prime is a first form of the secure PRF.
Support are the formed prime is a first form of the secure PRF.
Support are the formed prime is a first form of the secure PRF.
Support are the formed prime is a first form of the secure PRF.
Support are the formed prime is a secure PRF.
Support are the secure prime is a secure PRF.
Support are the secure prime is a secure PRF.
Support are the secure prime is a secure PRF.
Support are the secure prime is a secure PRF.
Support are the secure prime is a secure PRF.
Support are the secure prime is a secure prime is a secure PRF.
Support are the secure prime is a secure prime prime is a secure PRF.
Support are the secure prime is a secure prime prim