
Definition: An encryption scheme TISE
= (Encrypt, Decrypt) is secure against chosen- plaintext attacks (CPA

-

secure) it for all efficient

adversaries A :

CPAADIA.IT#T--/PrlWo--13-Prfwi-13/--neg1 .
where Wb (b. c- {0,13) is the output of the following experiment :

b. C- {on]

⇒⇔
"i¥¥

ggp.gg
← same idea as in original semantic security game, but allow adversary

to make encryption queries (also called a
" left- or - right

"
oracle)

→ -

b' c- { 0,1}
Adversary 's goal is to guess which

of Mo or m , was encrypted, given access

output of experiment Wb { to an encryption lie, adversary gets to see encryptions of messages]
of its choice

.

Claim
.
A stream cipher is not CPA - secure .

Proof. Consider the following adversary :
b. c- {0,13

↓

adversary chatterer
choose Mo , m , c- Me SE {oil]

"
Pr [b' = I / b = 0] = 0 since c

'
= Mo ⊕ G (s) = c.

where Mo ≠ Mi Pr [b' = 1 / b. = 1] = 1 since c
'
= m

,
⊕ Gls) ≠ C

→
⇒ CPA Adu [A

,
TSE] = 1

o⊕G(s)

>

<⊕GG)_
output 0 if c=c

'

output 1 if Cfc
'

Observes : Above attack works for
any deterministic encryption scheme

.

⇒ CPA - secure encryption must be randomized !
⇒ To be reusable

,
cannot be deterministic. Encrypting the same message twice should

not reveal that identical

messages were encrypted .

To build a CPA - secure encryption scheme
, we

will use a
" block cipher

"

-

Block cipher is an invertible keyed function that takes a block of n input bits and produces a block of n output bits
-

Examples include 3D F-S (key size 168 bits
, block size 64 bits)

AES (key size 128 bits
,
block size 128 bits) block ciphers

Will define block ciphers abstractly first : pseudorandom functions (PRE) and pseÑdmfermutations(PRPs)-
↳
Ge_→ : PRFS behave like tandem functions

PRPS behave like rand→ permutations

Definition
.
A function F : K ✗ ✗ → Y with key- space K , domain ✗ , and range Y is a pseudorandom function (PRF) if for all

efficient adversaries A
, / Wo -Wi / = neg! , where Wb is the probability the adversary outputs 1 in the following

experiment : b. C- {0,13

edx €4
k £ K; 5- f)← FCK ;) if b. = O

f £ Fans [X, Y] if b. = 1

→ ←
the space of all possible functions from ✗ → Y

(function f C- Fans [KY] can be represented by a truth table of
←

, , , , ,
, , , µ, , way ,,µµ, aye ,

b' c- {on }

PRF Adv [A
,
F] = / Wo - W , / = / Pr [A outputs 1 / b-- o] - Pr [A outputs I / b=1] /

Intuiting : input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally
- bounded

adversary)
3D Es : {0,13168 ✗ {0,1364 → {0,1364 1K/ = 2168 / Fun, [✗

,
y]/ = (264¥

"

1K/ = 2128 / Fun, [×, y] / = (2×8,12128) } space of random functions is

AES : { 0,13128 ✗ { 0,13128 → {0,13128 exponentially - larger than key-space!

Definition : A function F : K ✗ ✗ → ✗ is a pseudorandom permutation CPRP) if
- for all keys K ,

FCK
,
•) is a permutation and moreover

,
there exists an efficient algorithm to compute

F- ' (k
,
7 :

IKE K : thx c- ✗ : F-
' (k

,
FCK

,
×)) = ✗

- for K £ K
,
the input-output behavior of FCK

,

•) is computationally indistinguishable from ft) where

f £ Perm Ex] and PermEX] is the set of all permutations on ✗ (analogous to PRF security)

Note: a block cipher is another term for PRP (just like stream ciphers are PRGS)

Observe that a block cipher can be used to construct a PRG :

F : {0,13
"
✗{0,13

"
→ {0,13

"

be a block cipher
en

Define G :{0,13
"
→ {0,13 as

G (K) = FCK
, 1) 11 FLK

,
2) 11 - - - I / FCK

,
l) ← this stream cipher allows random access !

↑ ↑

string concatenation write input as an n-bit string

we said PRP above (just require that n > loge)
(will revisit this)

theorem. If F is a secure PRF
,
then G is a secure PRG .

Pit . As usual , we show the contrapositive: if G is not a secure PRG, then F is not a secure PRF
.

Suppose we have efficient adversary A for G. We use A to build adversary for F :
b. C- {0,13

Algorithm for breaking F
> Expects to see
_

ÉF↓ 1
. If l = poly , then B is efficient

b--0 : KEK ; t ←GCK)

f
b = 0 : KEK ; f- ← FCK 't

2. If b--0 : B. sends Glk) to A
b--1 : + ← {o, 1)

ln b. = 1 : f ←R Fans [{on]? {0,13h][
"

random key"""§
g. , , ,,

°" " " " """⇒

If b = 1 :B sends uniformly random

string (f- is random-funct.in)

"

i÷-
to A

3. PRFAdvEB.FI =/Pr [b' = I / b=o] -
Pr [b' =/ / b-- I] /

= / Pr [A outputs 1 / b-- o] -PRCA outputs 1/6=1]
= PRGAdv [A, G]

which is non -negligible by assumption .

But
. . .
we used a block cipher (PRP) in our construction above. Does the proof still go through?

Not quite . . .
for a random function

,
f- (1) = f- (2) with probability ¥

for a random permutation, fc,)
= ffs) with probability o

} but £
"

might be
very very small .. .

adversary won't notice unless it sees a

"
collision

" [i.e.
,
two values ×,y

where

f-G) = fly)]

PRF-swi-h.ca .
Let F : K ✗ ✗ → ✗ be a secure PRP

.
Then

,
for

any
Q -
query adversary A :

/ PRPAd✓[A
,
F] - PRFADVIAF]/ ≤ 2¥,

Pr◦otIdea_
. Adversary essentially cannot tell the difference unless it sees a collision

. If there is no collision
,
then it is just

seeing random values. How
many queries before there is a collision ? Birthday paradox : Q

~ NTXT

Take-away : If 1×1 is large leg, , exponential) , then we can use a PRP as a PRF
.

- 3DES : n = 64 so 1×1=264 [if adversary makes ⇐ 232 queries , then can use it as a PRF]
-

AES : n = 128 so 1×1=2128 [if adversary makes << 26"
queries, then can use it as a PRF]

