
ther : PRP / PRF in "
counter mode

"

gives us a stream cipher (one - time encryption scheme)

f- typically , the IV is divided into a

HowdÉ? Choose a randoM_ starting point (called an initialization vector) nonce /value that does not repeat) and
a counter : IV = nonce // counter" randomized counter mode

"

-
random

divide message into blocks (based on block size of PRF)

value

⊕

⇔w⇔

absence : ciphertext is longer than the

message (required for CPA security)

theorem: Let F : K ✗ ✗ → Y be a secure PRF and let Tlctr denote the randomized counter mode encryption scheme

from above for l-block messages (M
= ✗

≤e)
.
Then

,
for all efficient CPA adversaries A

,
there exists an

efficient PRF adversary B such that

CPAADVEA
,
-11in] ≤ + 2- PRFAdvEB.FI

[
Q: number of encryption queries
l : number of blocks in message

Intuition : 1
.

If there are no collisions (i.e., PRF never evaluated on the same block)
,
then it is as if everything is

encrypted under a fresh one
- time pad.

2. Collision event : (X
,
✗ +1

, . . _ ,
✗ + l- 1.) overlaps with (✗ '

,
✗
'
1- 1, - - - , ✗

'
+ l- l) when ×

,
×
' I ✗

→→
✗ - e × ✗+ l

←

probability that ×
'

lies in this interval is ≤ ¥1

There are ≤ Q2
possible pairs (X, X

')
, so by a union bound

,

Pr[collision] ≤

3. Remaining factor of 2 in advantage due to intermediate distribution (hybrid argument)
:

Encrypt Mo with PRF PRFADVEB,F) +%
Encrypt Mo with fresh one-time pad

I 0
Encrypt me with fresh one- time pad

I PRFADV [B.F) + 2f-Encrypt m
, with PRF

Interpretation: If 1×1=2128 (e.g. , AES) , and messages are 1 MB long (2
"
blocks) and we want the distinguishing advantage

to be below 2-32
,
then we can use the same key to encrypt

Q ≤ f→¥1✗ = J¥ = = 239 (~ / trillion messages !)

N-e-basedcounterm-deidiv.de IV into two pieces
: IV = nonce // counter

↑
value that

does not repeat
common choices : 64 -bit nonce, 64 - bit counter } only nonce needs to be sent !

96- bit nonce
,
32 - bit counter (slightly smaller ciphertext)

Only requirement for security is that IV does not repeat :
-

Options: Choose randomly (either IV or nonce)
-

Options: If sender + recipient have shared state (e.g., packet counter)
,
can just use a counter

,
in

which case , IV / nonce does not have to be sent

(CTR)

Counter mode is parallelizable, simple
- to - implement , just requires PRF

-

preferred mode of using block ciphers

Other block cipher modes of operation :

Cipherblock chaining CCBC) : common mode in the past (e.g. , TLS 1.0 , still widely used today)

☒ ☒ ME

17=-1175/ F-EH-FH-t.IEchosen 7

⇔
:

. -¥÷::±¥⇒.t÷¥to compute F-
1

Encryption not just PRF) Decryption

theorem: Let F : K ✗ ✗ → Y be a secure PRF and let Tlcisc denote the CBC encryption scheme for l - block

messages (m = ✗≤e)
.
Then

,
for all efficient CPA adversaries A

,
there exists an efficient PRF adversary

B such that 20212
CPAADVEA

,
Tasc] ≤ 1×1-+2 - PRFADVEB

,
F)

[
Q: number of encryption queries
l : number of blocks in message

intuition : similar to analysis of randomized counter mode :

1. Ciphertext is indistinguishable from random string if PRP is evaluated on distinct inputs
2
.
When encrypting ,

PRP is invoked on l random blocks
,
so after Q queries , we have Ql random blocks

.

⇒ Collision probability ≤ I this is larger than collision prob. for randomized counter mode by a
factor of £ [overlap of Q random intervals vs. Ql random points]

3. Factor of 2 arises for same reason as before

212 40Th

Interpretation . CBC mode provides weaker security compared to counter mode : 2¥ us . -1×1

Concretely : for same parameters as before (I MB messages,
2-32 distinguishing advantage) :

Q ≤ f¥ʰ = ✓ = 1-263 = 2%5 (~ 1 billion messages)

↳ 2%5 ~ 180 ✗ smaller than using counter mode

Paddick : each ciphertext block is computed by feeding a message block into the PRP

⇒
message must be an even multiple of the block size

⇒
when used in practice, need to pad messages

can we pad with zeroes
? Cannot decrypt ! What if original message ended with a bunch of zeroes ?

Beguine : padding must be invertible

CBC padding in TLS 1.0 : if K bytes of padding is needed , then append to bytes to the end, with each byte set to 1<-1

(for AES- CBC) if 0 bytes of padding is needed, then append a block of 16 bytes , with each byte equal to 15
↳ dummy block needed to ensure pad is invertible (injective functions met expand :|↳ called PKCS#5 /PKCS # 7 (public-key cryptography standards) / {0,13

≤ 2561 > / {0,132561

Need to pad in CBC encryption can be exploited in
"

padding oracle
"
attacks

Padding in CBC can be avoided
using idea called "

ciphertext stealing
" (as long as messages are more than 1 block)

each keystroke is sent in separate
packet , so # packets leaks info on lendjh

"% ...

"" :

Comparing CTR mode to CBC mode :

imagine 1 byte messages
CTRmode__ CBCmode_

encrypted key strokes1. no padding needed (shorter ciphertext) over SSH

2. parallelizable 2. sequential 1 block + I byte with CTR

2 blocks with CBC
3.

only requires PRF (no need to invert) 3. requires PRP
←

\
4. tighter security 4. less tight security requires more structured primitive,
5. IVs have to be non-repeating / easy to implement : (re-key more often) more code to implement forward

and backward evaluation
land spaced far apart) IV = nonce /I counter 5. requires unpredictable IVs

↑

only needs to be [TLS 1.0 used predictable IVs
non- repeating (can be predictable) (see HWI for an attack)

SSH v1 used a 0 IV

lever worse !)

Bottomine : use randomized or nonce -based counter mode whenever possible : simpler , easier , and better than CBC !

A tempting and bad way
to use a block cipher : ECB mode (electronic codebook)

↑ AT Ñ }
≤"" "ˢ ←"""⇔ " """" * ⇔ """"

17¥ FIE Not even semantically secure !

✓ ✓ (Mo
,
Mo) V5

.
(Mo

,
Mi) where m , ≠ Mo

☒ 1€ ↑ ↑
ciphertext blocks output

ciphertext blocks
output are same

are different

=yptin : simply apply block cipher to each block

of the message

Decryption : simply invert each block of the ciphertext

NEVER USE ECB MODE FOR ENCRYPTION %

