
Messageintegrity: Confidentiality alone not sufficient
,
also need messageintegrity. Otherwise adversary can tamper with the message

(e.g. ,
"

send $100 to Bob
"
→

"

send $100 to Eve
")

In some cases (e-g., software patches) , integrity more important than confidentiality
Idea : Append a "

tag
" (also called a "

signature
") to the message to prove integrity

(
property we want is tags should be hard to forge)

[
this tolerates a single error

Observation: The tag should be computed using a keyed- function (better error-correcting codes can do much

↳ Example of keyless integrity check : CRC (cyclic redundancy check) [simple example is to set tag to be the parity]
be"")

↳ this was used in SSH v1 11995) for data integrity ! Fixed in SSH v2 11996)

↳ also used in WEP 1802.1lb) protocol for integrity
- also broken!

Protein : If there is no key, anyone can compute
it ! Adversary can tamper with message

and compute the new tag .

Definition . A message authentication code (MAC) with key -space K , message space M and tag space T is a tuple of

algorithms TIMAC = (sign , Verify) :

sign : K ✗ M → T } Must be efficiently - computable
Verify : Kim ✗T → {0,13

Ects : Hk c- K
,
then :

Pr [Verify (K , M , sign 1km)) = 1] = 1
[
Sign can be a randomized algorithm

Definingseurity : Intuitively, adversary should not be able to compute a tag on any message without knowledge of the key
↳ Moreover

,
since adversary might be able to see tags on existing messages (e.g., signed software

updates) , it should not help towards creating a new MAC

adversary gets to choose

messages to be signed

Definition . A MAC lTmac=(Sign, Verify) satisfies existential unforgeability against chÑÑa (EUF - CMA) if for all efficient

adversaries A
,
MACADIA, Tlmac] =Pr[W=1] = negl.la) , where W is the output of the following security game

:

adq ch⇔

[
⇐ µ

As usual , 7 denotes the length of the MAC secret key

/€> leg. . log 1kt = poly Cx))
ÉÉG Note : the key can also be sampled by a special keyGen

algorithm (for simplicity , we just define it to bef- -

uniformly random)(m*
,
-1*1

Let Mi
,
. . .

, MQ be the signing queries the adversary submits to the challenger, and let ti ← sign 1k , mi) be the challenger's

responses. Then, W
= 1 if and only if :

Verify /K, m*, + *) = 1 and 1m¥
,
+
*) ¢ { Cm , ,

-4)
,
. . .

,
(Ma

,
Ta)}

MAC security notion says that adversary cannot produce a new tag on any message even if it gets to obtain tags on messages of its

choosing .

First
,
we show that we can directly construct a MAC from any PRF.

Mttcsfromprfs : Let F : K ✗ M → T be a PRF. We construct a MAC Tlmac over (K
,
M

,
T) as follows :

sign (Kim) : output t ← FCK , m)

Verify (k ,m ,
-2) : output 1 if t = FCK,m) and 0 otherwise

Theca . If F is a secure PRF with a sufficiently large range , then Imac defined above is a secure MAC. Specifically,
for

every
efficient MAC adversary A , there exists an efficient PRF adversary B such that

MACADVEA
,
Tlmac] ≤ PRFADREB

,
F) + ¥1

.

Inlio¥ : 1. Output of PRF is computationally indistinguishable from that of a truly random function
.

2 . If we replace the PRF with a truly random function
, adversary wins the MAC

game only if it

correctly predicts the random function at a new point. Success probability is then exactly YITI
.

Proof. We define the following sequence of hybrid experiments :

Hybo : This is the MAC security game :

ad⇒ ←É God : show for all efficient A :

/€> [
⇐ K

Prltlybo (A) = 1] = negl .
G

d- _

(m*
,
-1*1

Experiment outputs 1 if adversary did not
query on

m* and +
*
= Flk

,
m*)

Hyb , : same as Hybo except we replace Flk , °) with ft) where f % Fans [M
,
T]

Le_mma1 .

If F is a secure PRF
,
then for all efficient adversaries A

,

/ Pr[Hyb . (A) = I] - Pr[Hyb, (A) =L] = neyl .
Info . Suppose there exists efficient A such that above probability is E. We construct B as follows :

-a¥yB _

challenges !
be {0,13

b. = 0 : KIK
f : = FCK, -)

aA ! = ≥ : teams Em, -1]

1-
↳

output 1 it A does not
query on m* and +

*
= f(m*)

Pr [B outputs 1 / b--0] = Pr/ Nybo (A) = 1]
Pr [B outputs 1 / b = 1] = prayb. (A) = 1] } PRF

Adr [B.F) = E

Lemmata .
For all adversaries A

, Prttlyb ,
/A) = 1] = ¥1

.

PIF . Hyb ,
(A) outputs 1 if A predicts value of fat m* . Since f is uniform

,
A succeeds

with probability at most YITI
.

Implication : Any PRF with large output space can be used as a MAC.

↳ AES has 128 - bit output space, so can be used as a MAC

Dk : Domain of AES is 128-bits
,
so can only sign 128-bit (16-byte) messages

How do we sign longer messages ? We will look at two types of constructions :

1. Constructing a large- domain PRF from a small- domain PRF (i. e. , AES)

2. Hash- based constructions

Approach 1 : use CBC (without IV)

. - -☒
-⇒

FÉ¥⇒-_: i¥→ output

Not encrypting messages so no need for IV (or intermediate blocks)
↳ Mode often called "

raw - CBC
"

Raw- CBC is a way to
build a large-dom-i.in PRF from a sma-t-dnma.ir one

↳ Can show security for
"

prefix-free
"

messages [more precisely, raw - CBC is a prefix-free PRF : pseudorandom as long
~ as PRF never evaluated on two values where one is a prefix of other

]
> includes fixed-length

messages as a special case

But not secure for variably messages
: "

Extension attack
"

1. Query for MAC on arbitrary block × :

1¥ /
☒ FE

tag

t.FI#-i=(k.xT FFi→ Fck
,
✗1=-1

2. Output forgery on message (X , ✗ ⊕ t) and tag t
- ⇒ t is a valid tag on exten-dedmessage-tx.tt×)

↳ Adversary succeed with advantage 1

