
[for NMAC, F
: K ✗ ✗ → K

theorem. Let F : K ✗✗→ ✗ be a secure PRF
.

Let TIECBC be the encrypted CBC MAC formed by F. Then
, for all

MAC adversaries A ,
there exists a PRF adversary B where

}
quadratic dependence on Q

Q2 (l+ 1)
2

/
arises for similar reason as

in analyzing CPA securityMALAIKA
,
1TEur] ≤ 2. PRFADVCB , F) + -1×1

(argue that all inputs to PRF)PIF .
See Boneh- Shoup , Chapter 6. are unique

Implication: Block size of PRF is important !
-

3DES : 1×1=264 ; need to update key after
< 232 signing queries

-

AES : 1×1=2128 ; can use key to sign many more messages (v2
"

messages)

A parallelizable MAC IPMAC) - general idea :

f-
derived as Flki

,
) - so key is just K

,

A- . .
- ☒ Plk , •) are important - otherwise

, adversary can

Plk, 1)→0¥ PCK,4⇒⊕↓ Plk,3 Plk,e)→ / pee the blocks

/ / / t ↳ "mask
"

term is of the form • K where

FIE tHfH THE multiplication is done over GF (2n) where n is

1 the block size (constants Pi carefully chosen for

efficient evaluation)

↳F)→ tag

can use similar ideas as CMAC (randomized prefix- free encoding) to support messages that is not constant multiple of block size

Parallel structure of PMAC makes it easily updateable (
assuming F is a PRP)

↳
suppose we change block i from m[i] to m

' [i] : } PMAC is
"

incremental
"

:

compute F-
' (Kitag) ⊕ ⊕ T-lk.gg?i?,.EPlk.iD- can make local updates

without full recomputation

In terms of performance :

-

On sequential machine , PMAC comparable to F-CBC, NMAC, CMAC } Best MAC we've seen so far
,
but not used . . .

- On parallel machine, PMAC much better Reasons : patents [not patented anymore
!]

Suminary : Many techniques to build a large-domain PRF from a small - domain one (domain extension for PRF)
↳ Each method (F- CBC

,
CMAC

, PMAC) gives a MAC on variable-length messages
↳

Many of these designs (or their variants) are standardized

So far
,
we have focused on constructing a large- domain PRF from a small-domain PRF in order to construct a MAC

on long messages
↳ Alternative approach :

"

compress
"
the message itself leg,

"

hash
"

the message) and MAC the compressed representation

still require unforgeaby : two messages should not hash to the same value [otherwise trivial attack : if Hlm ,)= Hlmz) , then

MAC on m , is also MAC on mz]
↳ EE-in-ui-ive.it hash value is shorter than messages, collisions atways exist - so we can only require that they are

hard to find

Definition
.
A hash function H ? M → T is collision - resistant if for efficient adversaries A

,

CRHFAdvLA.tl/=PrElmo.mD-A:H(mo)--HlmD)--negl .

As stated, definition is problematic : if 1M/ > ITI , then there always exists a collision ME
,
MY so consider the adversary

that has ME , MY hard coded and outputs ME , MY

↳
Thus, some adversary atways exists (even if we may not be able to write it down explicitly)

↳
Formally , we model the hash function as being parameterized by an additional parameter leg, a " system parameter

"

or

a
"

key
") so adversary cannot output a hard- coded collision

↳
In practice , we have a concrete function leg, SHA -256) that does not include security or system parameters

↳ believed to be hard to find a collision even though there are infiaitely-many-G.HN-256 can take inputs
of arbitrary length)

MACRHFs : suppose we have the following
- A MAC (Sign , Verify) with key- space K , message space Mo and tag space T Leg, Mo = { on}

"

Mi = { 0,13
*]

- A collision- resistant hash function H : M
,
→ Mo

Define 51km) = SCK , Hlm)) and

Vik
, mi)

= VIK
,
Html

,
t)

theorem. Suppose TIMAC = (sign, Verify) is a secure MAC and H is a CRHF
.

Then
,
Ttmac is a secure MAC . Specifically,

for every efficient adversary A, there exist efficient adversaries Bio and B, such that

MACAdv[A
,
Ttmac] ≤ MACAdr[Bo

,
Tlmac] + CRHFAdv[B, , -71]

Profiled. Suppose A manages to produce a valid forgery t on a message me
. Then

,
it must be the case that

- t is a valid MAC on H (m) under TIMAC

- It A queries the signing oracle on m
'
≠ m where HIM') = H (m)

,
then A breaks collision- resistance of H

- If A never queries signing oracle on m
'

where HIM' / = HIM)
,
then it has never seen a MAC on HIM) under

TIMAC . Thus
,
A breaks security of TIMAC

.

[See Boneh-Shoup for formal argument - very
similar to above : just introduce event for collision occurring vs . not occurring]

Constructing above is simple and elegant , but not used in practice
-

Disadvantages: Implementation requires both a secure MAC and a secure CRHF : more complex , need multiple software/hardware

implementations
-

Disadvantaged : CRHF is a keyless object and collision- finding is an offline attack (does not need to query verification oracle)

Adversary with substantial preprocessing power can compromise collision- resistance (especially if hash size is small)

Birthdayattackonttts. Suppose we have a hash function H : {0,15 → {oils
.

How might we find a collision in 4 (without

knowing anything more about H)

Approached: Compute H (1)
,
H (2), . . . , H(2l + 1) fsize of hash output space

↳
By Pigeonhole Principle, there must be at least one collision - runs in time 0 (Ll)

Approached : Sample mi
⇐ {913

"

and compute Hlmi)
. Repeat until collision is found.

How many samples needed to find a collision?

TBitdayPa . Take
any
sets where 1st = n

. Suppose ri , . . - , re
± S

. Then,

Pr[7- i≠j:ri=r;] ≥ 1- e-%¥

Pref. Pr[Ii≠j:ri= rj]
= 1- Pr [V-i±j : ritrj]
= 1- Pr[rz ¢ {r , }] - Pr[r, ¢ {ran}] ' - - - - Pr/re ¢ {re-, , -. . , ri]

= 1- ¥ . n÷
. njfˢ

= / - ¥ / 1-in) y
dominant term when

i= , [automatically holds for ✗ ≤ - I 1×1<1

l- l -

✗
2 ✗

3

≥ 1- Tie" since / 1- ✗ ≤ e
"

for all ✗ c- 112 (ex = It ✗ t 2- 1- 6-
+ - - -]i -- I

e-i

& -in -

= 1- ei" = 1- Éi%
"

positive for all × >
0

-

= I - e

✓
number of people in a room

to have a common birthday
when I≥ 1.25N

,
Pr[collision] = Pr[Ii≠j : ri = rj] > É .

[For birthdays , 1.25365 ≈ 23]
↳ Birthdays not uniformly distributed , but this only increases collision probability .

[Try proving this
!]

For hash functions with range {0,13? we can use a birthday attack to find collisions in time Ñ = 2% can even do it with

constant space !↳ For 128- bit security (e.g., 2128
)
, we

need the output to be 256- bits (hence SH-A-21.co)

(via Floyd 's cycle finding]↳ Quantum collision - finding can be done in 2% (cube root attack)
, though requires more space algorithm

