
HMAC (most widely used MAC)
so how do we use hash functions to obtain a secure MAC? Will revisit after studying constructions of CRHFS

.

Many cryptographic hash functions (e.g. , MDS, SHA-1 , SHA -256) follow the Merkle-Damgcird paradigm : start from hash function on short

messages and use it to build a collision- resistant hash function on a long message :

1. Split message into blocks

2. Iteratively apply compressionfunction-lhas.tn function on short inputs) to message
blocks

€1 • • • Ñ_ h : compression function

to
, . .

- ite : chaining variables!I padding introduced so last block is multiple of block¥±
. output size

↳
must also include an encoding of the message

Hash functions are deterministic
,
so IV is a fixed string length : typically of the form 100 - - - 0115s>

(defined in the specification) - can be taken to be all - zeroes string , where Is> is a fixed-length binary representation
but usually set to a custom value in constructions of message length in blocks

Read : 100--10 padding was used in the

ANSI standard

if not enough space to include the length, then

for SHA-256 : extra block is added (similar to CBC encryption)
✗ = {0,13256 = y

Th Suppose h : ✗ ✗ Y→ ✗ be a compression function. Let H : Y
≤ l → ✗ be the Merkle- Damaged hash function

constructed from h
.
Then

,
if his collision- resistant

,
H is also collision- resistant.

Proof suppose we have a collision- finding algorithm A for H. We use A to build a collision- finding algorithm for h :
1. Run A to obtain a collision M and M

'

(MCM) = HIM:/ and M≠M ')
.

2
.
Let M= m

, ma
- - - Mu and M

'
= mimi - - - mi be the blocks of M and M'

, respectively. Let to
, -4 , . ._, tu and

titi - - - ti be the corresponding chaining variables.
3
. Since HIM) = HIM')

,
it must be the case that

HIM) = htu-i.mu) = htiv -1 , mi) = HIM')
If either ta-i ≠ tie or Mimi

,
then we have a collision for h .

Otherwise
,
Mu = mi and tu-1=+4-1

.

Since Mu and mi include an encoding of the length of M and M! it must

be the case that U=✓
.

Now
,
consider the second- to - last block in the construction (with output tu- I = the-1) :

tu-i = hltu-z.mu-c) = hlth-z.mu-1) = tie- ,
Either we have a collision or t.us = Éu-2 and muy = mi-1 . Repeat down the chain until we have collision or

we have concluded that mi = m! for all i
,
and so M=M'

,
which is a contradiction

.

Note: Above constructing
is sequential . Easy to adapt construction (using a tree) to obtain a parallelizable construction .

Sufficient now to construct a compressionfunction .

Typical approach is to use a block cipher.

Davies-Meyer_ : Let F : K ✗ ✗→ ✗ be a block cipher. The Davies - Meyer compression function h : K ✗ ✗→ ✗ is then

Mick

↳FF→→tie× ʰ(Kix) : = Flkix) ⑦ ✗

Many other variants also possible : hlk, x) = FCK,×) ⊕ k ⊕ ✗
-

[used in Whirlpool hash family]
Need to be careful with design !
- hlk

,
✗) = FCK , ✗) is not collision - resistant : h (K , X) : hlk

'

,
F-' (k' , FCK, ✗D)

- h (Kx) = FCK, ×) ⊕ K is not collision - resistant : h (K, X) = hlk
'

,
F-

' (k
'

,
FCK

,
×) ⊕ k ⊕ K

'))

Thoen. If we model F as an ideal block cipher lie, a truly random permutation for every choice of key), then Davies- Meyer is

collision- resistant.
> birthday attack run-time :

~28°

faster)
Conclusion : Block cipher + Davies- Meyer + Merkle-Damgirrd ⇒ CRHFS January , 2020 : chosen- prefix

collision in -263.4 time !÷:: ::::::::::::⇐ampLes: SHA-1 : SHACAL-1 block cipher with Davies- Meyer + Merkle
- Damgoird ← no longer secure [first collision found in 2017 !]

SHA -256 : SHACAL-2 block cipher with Davies - Meyer
+ Merkle- Damgñrd

software updates, PGP/GPG signatures,

why not use AES ? certificates)→ attacks show need

-

Block size too small ! AES outputs are 128- bits, not 256 bits (so birthday attack finds collision in 264 time) to transition +0
SHA-2 or SHA-3

- Short keys means small number of message bits processed per iteration .
-

Typically, block cipher designed to be fast when using save key to encrypt many messages
↳ In Merkle- Damgoird , different keys are used , so alternate design preferred (AES key schedule is expensive)

Recently : SHA-3 family of hash functions standardized (20/5)
↳ Relies on different underlying structure (" sponge

" function)
↳ Both SHA -2 and SHA-3 are believed to be secure (most systems use SHA -2 - typically much faster)

✗ or even better
,
a large -domain PRF

Back to building a secure MAC from a CRHF - can we do it more dicky than using CRHF + small- domain MAC ?

↳ Main difficulty seems to be that CRHFS are keyless but MACS are keyed
idea: include the key as part of the hashed input

By itself , collision - resistance does not provide any
"

randomness
"

guarantees on the output
↳ For instance , if His collision- resistant

,
then H' (m) = Moll - - - 11mn11 HIM) is also collision - resistant even though H

'
also

leaks the first 10 bits/ blocks of m

↳ Constructing a PRF/MAC from a hash function will require more than just collision resistance

-

Options: Model hash function as an
" ideal hash function

"

that behaves like a fixed tralyrandom function

(modeling heuristic called the random oracle model - will encounter later in this course)

Ipti_2 : start with a concrete construction of a CRHF (e.g. , Merkle
-Damojard or the sponge construction)

and reason about its properties
↳ We will take this approach

Suppose H is a Merkle- Damgaord hash function built from a Seac compression function

several
ways to build a keyed function :

1. Prepend key : FCK , m) : = TICK 11m)
↳ Insecure due to structure of Merkle- Damgaird : can Mount an

"
extension attack:

"

given H (KUM)
,
can compute

HIKHMHM') by extending Merkle- Pamgñrd chain

2. Append key : FCK,m) : = Hlm 11k)
↳ Similar to hash- then- MAC construction and vulnerable to same offline attack : adversary finds a collision in the

Merkle- Damgñrd prefix and uses that to construct a forgery for SHA-1
, they used PDF files

↳ structure exploited in SHA-1 collision demonstration (can generate arbitrary collisions once prefix matches)
3. Envelope method : FCK, m)

'

- = H(KHMHK) } for reasonable pseudorandomness assumptions on h (e.g. , both

4. Two- key nest : F((ki
,
kz) , m) : = H (Kz // Hlk , 11m)) F- (Kim) : = h(Kim) and Falk,m) : = hlm ,

K) is a PRF)
,
both

of these constructions are secure PRFS on a variable- size domain

✗
hash-based MAC

HMAC is a PRF /MAC based on the two- key nest (though with correlated keys) :

HMACCK
,
m) : = H(kill Hlkz , m))

where k
,

← k ④ ipad and kz← k ⊕ opad
and ipad and opad are fixed strings (specified in the HMAC standard)

↑ ↑
0×36 repeated 0×5C repeated

Security : Since K ,
and kz are correlated

,
need to make stronger assumption on security leg, h remains pseudorandom under a relatedkey

attack)

Instantiations : Typically , denoted HMAC- H where H is the hash function

e.g, HMAC- SHAI

HMAC- SHA256 - one of the most widely- used MAC on the web (used in SSL/TLS, IPsec, SSH , and more)

HMAC-f-rmria-i.no. Recall that under reasonable assumptions , HMAC is a secure PRF

In
many protocols, we need to derive multiple keys from a single master key leg, derived from a password)
↳ To derive multiple independent cryptographic keys, a PRF is a natural primitive :

kenc ← HMAC (kmaster
,

"

enc
") } PRF security says derived keys are computationally indistinguishable from

kmac ← HMAC (kmaster
,

"
mac

") uniform

↑ ↑ i
derived keys master key tag (just has to be unique)

This approach is used in TLS and IPsec to derive session keys darin session setup
↳ General paradigm is the

"

expand
"

step in hash-based key- derivation (HKDF - RFC 5869)
↳ Consists of two procedures :

-

Extract : derive a master key from entropy
source leg,, a user password)

-

Expand: derive sub- keys from the master

key
Both steps rely on HMAC

