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Basic Definitions

• A finite probability space (Ω, p) consists of a finite setΩ= {ω1, . . . ,ωn} and a probability mass function
p : Ω→ [0,1] such that

∑
ω∈Ω p(ω) = 1. We refer toΩ as the sample space andωi as a possible outcome

of a probabilistic event. Throughout this handout, we will only consider finite probability spaces.

• An event E over a probability space (Ω, p) is a set A ⊆Ω. The probability of event E , denoted Pr[E ] is
defined to be Pr[E ] :=∑

ω∈E p(ω). For an outcome ω ∈Ω, we will write Pr[ω] to denote p(ω).

• A random variable X over a probability space (Ω, p) is a real-valued function X : Ω→ R. For the
remainder of this handout, we will assume all random variables are defined over a probability space
(Ω, p).

Expected Value and Variance

• The expected value E[X ] of a random variable X is defined to be

E[X ] := ∑
ω∈Ω

X (ω)Pr[ω].

• Linearity of expectation: For all random variables X ,Y and all α,β ∈R,

E[αX +βY ] =αE[X ]+βE[Y ].

• The variance Var(X ) of a random variable X is defined to be

Var(X ) := E[
(X −E[X ])2]= E[X 2]−E [X ]2

Useful Bounds

• Union bound: For every collection of events E1, . . . ,En ,

Pr

[ ⋃
i∈[n]

Ei

]
≤ ∑

i∈[n]
Pr[Ei ].

• Markov’s inequality: Let X be a non-negative random variable. For all t > 0,

Pr[X ≥ t ] ≤ E[X ]

t
.

• Chebyshev’s inequality: Let X be a random variable. For all t > 0,

Pr[|X −E[X ]| ≥ t ] ≤ Var(X )

t 2 .



• Chernoff bounds: Let X1, . . . , Xn be independent binary-valued random variables (i.e., the value of
Xi is either 0 or 1). Let X =∑

i∈[n] Xi and µ= E[X ]. Then, for every t > 0,

Pr[X ≥ (1+ t )µ] ≤
[

e t

(1+ t )1+t

]µ
Pr[X ≤ (1− t )µ] ≤

[
e−t

(1− t )1−t

]µ
.

Often, the following simpler (and looser) bounds suffice:

∀0 ≤ t ≤ 1, Pr[X ≤ (1− t )µ] ≤ e−
t2µ

2

∀0 ≤ t , Pr[X ≥ (1+ t )µ] ≤ e−
t2µ
2+t .

Another useful variant (by Hoeffding) gives a bound on the sum of any sequence of bounded random
variables. Specifically, let X1, . . . , Xn be independent random variables where each Xi ∈ [ai ,bi ] for
ai ,bi ∈R. As before let X =∑

i∈[n] Xi and let µ= E[X ]. Then, for all t > 0,

Pr
[∣∣X −µ∣∣≥ t

]≤ 2exp

(
− 2t 2∑

i∈[n](bi −ai )2

)
.

For the special case where Xi ∈ [0,1] for all i ∈ [n], the bound becomes

Pr
[∣∣X −µ∣∣≥ t

]≤ 2e−2t 2/n .

Example 1. Suppose X1, . . . , XN are independent binary-valued random variables where Pr[Xi = 1] = 1
2 +ε.

Let X̄ = 1
N

∑
i∈[N ] Xi . If N =λ/ε2, then

Pr[X̄ ≥ 1/2+ε/2] ≥ 1−negl(λ).

This follows by a direct application of the Chernoff/Hoeffding bound:

Pr

[
X̄ < 1

2
+ ε

2

]
= Pr

[ ∑
i∈[N ]

Xi −N

(
1

2
+ε

)
<−ε

2
N

]
≤ 2e−ε

2N 2/2N = 2e−λ/2 = negl(λ).

Averaging Argument

The basic averaging argument states that if X1, . . . , Xn ∈R are values with mean µ= 1
n

∑
i∈[n] Xi , then there

exists at least one i ∈ [n] where Xi ≥µ. There are several variants of this fact that often come in handy:

Lemma 1. Let X1, . . . , Xn ∈ [0,1] whose average is µ. Then at least an ε-fraction of the Xi ’s are at least p
where ε= µ−p

1−p .

Proof. Let t be the fraction of Xi ’s where Xi ≥ p. Then,µ< (1−t )p+t = p+(1−p)t , so t > (µ−p)/(1−p).

We state two immediate corollaries of Lemma 1 that are often useful:

Corollary 2. If X1, . . . , Xn ∈ [0,1] whose average is µ, then at least a (µ/2)-fraction of the Xi ’s are at least
µ/2.

Corollary 3. Let X1, . . . , Xn ∈ [0,1] whose average is µ= p +ε. Then, at least an ε
2(1−p−ε/2) > ε

2(1−p) fraction
of the Xi ’s are at least p +ε/2.



Example 2. Let f be a function. Suppose we have an algorithm A where

Pr[x
R←− {0,1}n , y

R←− {0,1}n :A(x, y) = f (x)] = 11

12
.

We say a string y∗ ∈ {0,1}n is “good” if

Pr[x
R←− {0,1}n :A(x, y∗) = f (x)] ≥ 3

4
.

By an averaging argument (Lemma 1), at least a 2/3-fraction of y ’s are good (i.e., set µ= 11/12 and p = 3/4).
Namely,

Pr
[

y
R←− {0,1}n : Pr[x

R←− {0,1}n :A(x, y) = f (x)] ≥ 3/4
]≥ 2/3.

Example 3. Let f be a function. Suppose we have an algorithm A where

Pr[x
R←− {0,1}n , y

R←− {0,1}n :A(x, y) = f (x)] = 1

2
+ε.

We say that a string y∗ ∈ {0,1}n is “good” if

Pr[x
R←− {0,1}n :A(x, y∗) = f (x)] ≥ 1

2
+ ε

2
.

By an averaging argument (Corollary 3), at least an ε-fraction of y ’s are good. Namely,

Pr
[

y
R←− {0,1}n : Pr[x

R←− {0,1}n :A(x, y) = f (x)] ≥ 1/2+ε/2
]≥ ε.


