CS 388H: Introduction to Cryptography

Basic Probability Fact Sheet

Instructor: David Wu

Basic Definitions

- A finite probability space (Ω, p) consists of a finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and a probability mass function $p: \Omega \rightarrow[0,1]$ such that $\sum_{\omega \in \Omega} p(\omega)=1$. We refer to Ω as the sample space and ω_{i} as a possible outcome of a probabilistic event. Throughout this handout, we will only consider finite probability spaces.
- An event E over a probability space (Ω, p) is a set $A \subseteq \Omega$. The probability of event E, denoted $\operatorname{Pr}[E]$ is defined to be $\operatorname{Pr}[E]:=\sum_{\omega \in E} p(\omega)$. For an outcome $\omega \in \Omega$, we will write $\operatorname{Pr}[\omega]$ to denote $p(\omega)$.
- A random variable X over a probability space (Ω, p) is a real-valued function $X: \Omega \rightarrow \mathbb{R}$. For the remainder of this handout, we will assume all random variables are defined over a probability space (Ω, p).

Expected Value and Variance

- The expected value $\mathbb{E}[X]$ of a random variable X is defined to be

$$
\mathbb{E}[X]:=\sum_{\omega \in \Omega} X(\omega) \operatorname{Pr}[\omega] .
$$

- Linearity of expectation: For all random variables X, Y and all $\alpha, \beta \in \mathbb{R}$,

$$
\mathbb{E}[\alpha X+\beta Y]=\alpha \mathbb{E}[X]+\beta \mathbb{E}[Y]
$$

- The variance $\operatorname{Var}(X)$ of a random variable X is defined to be

$$
\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-E[X]^{2}
$$

Useful Bounds

- Union bound: For every collection of events E_{1}, \ldots, E_{n},

$$
\operatorname{Pr}\left[\bigcup_{i \in[n]} E_{i}\right] \leq \sum_{i \in[n]} \operatorname{Pr}\left[E_{i}\right] .
$$

- Markov's inequality: Let X be a non-negative random variable. For all $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

- Chebyshev's inequality: Let X be a random variable. For all $t>0$,

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

- Chernoff bounds: Let X_{1}, \ldots, X_{n} be independent binary-valued random variables (i.e., the value of X_{i} is either 0 or 1). Let $X=\sum_{i \in[n]} X_{i}$ and $\mu=\mathbb{E}[X]$. Then, for every $t>0$,

$$
\operatorname{Pr}[X \geq(1+t) \mu] \leq\left[\frac{e^{t}}{(1+t)^{1+t}}\right]^{\mu} \quad \operatorname{Pr}[X \leq(1-t) \mu] \leq\left[\frac{e^{-t}}{(1-t)^{1-t}}\right]^{\mu} .
$$

Often, the following simpler (and looser) bounds suffice:

$$
\begin{aligned}
\forall 0 \leq t \leq 1, \quad \operatorname{Pr}[X \leq(1-t) \mu] \leq e^{-\frac{t^{2} \mu}{2}} \\
\forall 0 \leq t, \quad \operatorname{Pr}[X \geq(1+t) \mu] \leq e^{-\frac{t^{2} \mu}{2+t}} .
\end{aligned}
$$

Another useful variant (by Hoeffding) gives a bound on the sum of any sequence of bounded random variables. Specifically, let X_{1}, \ldots, X_{n} be independent random variables where each $X_{i} \in\left[a_{i}, b_{i}\right]$ for $a_{i}, b_{i} \in \mathbb{R}$. As before let $X=\sum_{i \in[n]} X_{i}$ and let $\mu=\mathbb{E}[X]$. Then, for all $t>0$,

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i \in[n]}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

For the special case where $X_{i} \in[0,1]$ for all $i \in[n]$, the bound becomes

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-2 t^{2} / n} .
$$

Example 1. Suppose X_{1}, \ldots, X_{N} are independent binary-valued random variables where $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2}+\varepsilon$. Let $\bar{X}=\frac{1}{N} \sum_{i \in[N]} X_{i}$. If $N=\lambda / \varepsilon^{2}$, then

$$
\operatorname{Pr}[\bar{X} \geq 1 / 2+\varepsilon / 2] \geq 1-\operatorname{negl}(\lambda) .
$$

This follows by a direct application of the Chernoff/Hoeffding bound:

$$
\operatorname{Pr}\left[\bar{X}<\frac{1}{2}+\frac{\varepsilon}{2}\right]=\operatorname{Pr}\left[\sum_{i \in[N]} X_{i}-N\left(\frac{1}{2}+\varepsilon\right)<-\frac{\varepsilon}{2} N\right] \leq 2 e^{-\varepsilon^{2} N^{2} / 2 N}=2 e^{-\lambda / 2}=\operatorname{negl}(\lambda) .
$$

Averaging Argument

The basic averaging argument states that if $X_{1}, \ldots, X_{n} \in \mathbb{R}$ are values with mean $\mu=\frac{1}{n} \sum_{i \in[n]} X_{i}$, then there exists at least one $i \in[n]$ where $X_{i} \geq \mu$. There are several variants of this fact that often come in handy:

Lemma 1. Let $X_{1}, \ldots, X_{n} \in[0,1]$ whose average is μ. Then at least an ε-fraction of the X_{i} 's are at least p where $\varepsilon=\frac{\mu-p}{1-p}$.

Proof. Let t be the fraction of X_{i} 's where $X_{i} \geq p$. Then, $\mu<(1-t) p+t=p+(1-p) t$, so $t>(\mu-p) /(1-p)$.
We state two immediate corollaries of Lemma 1 that are often useful:
Corollary 2. If $X_{1}, \ldots, X_{n} \in[0,1]$ whose average is μ, then at least a $(\mu / 2)$-fraction of the X_{i} 's are at least $\mu / 2$.

Corollary 3. Let $X_{1}, \ldots, X_{n} \in[0,1]$ whose average is $\mu=p+\varepsilon$. Then, at least an $\frac{\varepsilon}{2(1-p-\varepsilon / 2)}>\frac{\varepsilon}{2(1-p)}$ fraction of the X_{i} 's are at least $p+\varepsilon / 2$.

Example 2. Let f be a function. Suppose we have an algorithm \mathcal{A} where

$$
\operatorname{Pr}\left[x \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}, y \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(x, y)=f(x)\right]=\frac{11}{12} .
$$

We say a string $y^{*} \in\{0,1\}^{n}$ is "good" if

$$
\operatorname{Pr}\left[x \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}: \mathcal{A}\left(x, y^{*}\right)=f(x)\right] \geq \frac{3}{4} .
$$

By an averaging argument (Lemma 1), at least a $2 / 3$-fraction of y 's are good (i.e., set $\mu=11 / 12$ and $p=3 / 4$). Namely,

$$
\operatorname{Pr}\left[y \stackrel{\mathrm{R}}{\curvearrowleft}\{0,1\}^{n}: \operatorname{Pr}\left[x \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(x, y)=f(x)\right] \geq 3 / 4\right] \geq 2 / 3 .
$$

Example 3. Let f be a function. Suppose we have an algorithm \mathcal{A} where

$$
\operatorname{Pr}\left[x \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}, y \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(x, y)=f(x)\right]=\frac{1}{2}+\varepsilon .
$$

We say that a string $y^{*} \in\{0,1\}^{n}$ is "good" if

$$
\operatorname{Pr}\left[x \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}: \mathcal{A}\left(x, y^{*}\right)=f(x)\right] \geq \frac{1}{2}+\frac{\varepsilon}{2} .
$$

By an averaging argument (Corollary 3), at least an ε-fraction of y 's are good. Namely,

$$
\operatorname{Pr}\left[y \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}: \operatorname{Pr}\left[x \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(x, y)=f(x)\right] \geq 1 / 2+\varepsilon / 2\right] \geq \varepsilon .
$$

