Definition. A group \(G \) is cyclic if there exists a generator \(g \) such that \(G = \{ g^0, g^1, ..., g^{\text{ord}(g)} \} \).

Definition. For an element \(g \in G \), we write \(\langle g \rangle = \{ g^0, g^1, ..., g^{\text{ord}(g)} \} \) to denote the set generated by \(g \) (which need not be the entire set. The cardinality of \(\langle g \rangle \) is the order of \(g \) (i.e., the size of the "subgroup" generated by \(g \)).

Example. Consider \(\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\} \). In this case,
\[
\langle 2 \rangle = \{1, 2, 4, \} \quad \text{[2 is not a generator of } \mathbb{Z}_7^* \}\]
\[
\langle 3 \rangle = \{1, 3, 2, 6, 4, 5\} \quad \text{[3 is a generator of } \mathbb{Z}_7^* \}\]

\(\rightarrow \) For \(\mathbb{Z}_p^* \), this means that \(\text{ord}(g) \mid p-1 \) for all \(g \in G \).

Corollary (Fermat's Theorem): For all \(x \in \mathbb{Z}_p^* \), \(x^{p-1} \equiv 1 \pmod{p} \).

Proof. \(|\mathbb{Z}_p^*| = |\{1, 2, ..., p-1\}| = p-1 \) for integer \(p \).

By Lagrange's Theorem, \(\text{ord}(x) \mid (p-1) \), so we can write \(p-1 = k \cdot \text{ord}(x) \) and so \(x^{p-1} = (x^{\text{ord}(x)})^k = 1^k = 1 \pmod{p} \).

Implication: Suppose \(x \in \mathbb{Z}_p^* \), and we want to compute \(x^y \in \mathbb{Z}_p^* \) for some large integer \(y \gg p \).

\(\rightarrow \) We can compute this as \(x^y = x^{y \cdot (p-1)} \pmod{p} \).

Since \(x^{p-1} \equiv 1 \pmod{p} \),

\(\rightarrow \) Specifically, the exponents operate modulo the order of the group.

\(\rightarrow \) Equivalently: group \(\langle g \rangle \) generated by \(g \) is isomorphic to the group \(\langle \mathbb{Z}_p^*, + \rangle \) where \(g = \text{ord}(g) \).

\(\langle g \rangle \cong \langle \mathbb{Z}_p^*, + \rangle \)

\(g^x \mapsto x \).

Notation: \(g^x \) denotes \(g \cdot g \cdot ... \cdot g \).

\(g^{-x} \) denotes \((g^x)^{-1} \) [inverse of group element \(g^x \)]

\(g^{-x} \) denotes \(g^{x^{-1}} \) where \(x^{-1} \) computed \(\text{mod } \text{ord}(g) \) — need to make sure this inverse \(\text{exists} \).

Computing on group elements: In cryptography, the groups we typically work with will be large (e.g., \(2^{256} \) or \(2^{1024} \)).

- Size of group element (# bits): \(\approx \log \text{l} \text{bb bits (} 2^{256} \text{ bits / } 2^{1024} \text{ bits} \)

- Group operations in \(\mathbb{Z}_p^* \): \(\log p \) bits per group element

 addition of mod \(p \) elements: \(O(\log p) \).

 multiplication of mod \(p \) values: namely \(O(\log^2 p) \),

 Karatsuba: \(O(\log^3 p) \).

 Schönhage-Strassen (GMP library): \(O(\log p \log \log p \log \log \log p) \)

 best algorithm \(O(\log p \log \log p) \) [2019]

 \(\rightarrow \) not yet practical (\(> 2^{1966} \) bits to be faster...)

 exponentiation: using repeated squaring: \(g, g^2, g^4, g^8, ..., g^{2^{1024}} \), can implement using \(O(\log p) \) multiplications \([O(\log^2 p) \text{ with naive multiplication}] \).

 \(\rightarrow \) time/space trade-offs with more precomputed values

 division (inversion): typically \(O(\log p) \) using Euclidean algorithm (can be improved).
- **Discrete log problem**: sample \(x \in \mathbb{Z}_p \),
given \(h = g^x \), compute \(x \)
- **Computational Diffie-Hellman (CDH)**: sample \(x, y \in \mathbb{Z}_p \),
given \(g^x, g^y \), compute \(g^{xy} \)
- **Decisional Diffie-Hellman (DDH)**: sample \(x, y, r \in \mathbb{Z}_p \),
distinguish between \((g, g^x, g^y, g^{xy}) \) vs. \((g, g^x, g^y, g^r) \)

Each of these problems translates to a corresponding computational assumption:

Definition. Let \(G = (g) \) be a finite cyclic group of order \(q \) (where \(q \) is a function of the security parameter \(\lambda \))

The DDH assumption holds in \(G \) if for all efficient adversaries \(A \):
\[
\Pr [x, y, r \in \mathbb{Z}_q : A(g, g^x, g^y, g^r) = 1] = \negl(\lambda)
\]

The CDH assumption holds in \(G \) if for all efficient adversaries \(A \):
\[
\Pr [x, y \in \mathbb{Z}_q : A(g, g^x, g^y) = g^{xy}] = \negl(\lambda)
\]

The discrete log assumption holds in \(G \) if for all efficient adversaries \(A \):
\[
\Pr [x \in \mathbb{Z}_q : A(g, g^x) = x] = \negl(\lambda)
\]

Certainly: if DDH holds in \(G \) \(\implies \) CDH holds in \(G \) \(\implies \) discrete log holds in \(G \)

There are groups where CDH believed to be hard, but DDH is easy

Major open problem: does this hold?
Can we find a group where discrete log is hard but CDH is easy?

Diffie-Hellman key exchange

- Let \(G \) be a group of prime order \(p \) (and generator \(g \)) - choice of group, generator, and order fixed by standard

Alice
\[
\begin{align*}
x & \in \mathbb{Z}_p \\
g^x & \in \mathbb{Z}_p
\end{align*}
\]

Bob
\[
\begin{align*}
y & \in \mathbb{Z}_p \\
g^y & \in \mathbb{Z}_p
\end{align*}
\]

\[
\begin{align*}
\text{compute } g^{xy} & = (g^x)^y \\
\text{compute } g^{xy} & = (g^y)^x
\end{align*}
\]

\[
\text{shared secret: } g^{xy} \leftarrow
\]

But usually, we want a random bit-string as the key, not random group element

\(\Leftarrow \) Element \(g^x \) has \(\log p \) bits of entropy, so should be able to obtain a random bit-string with \(\lambda < \log p \) bits

\(\Leftarrow \) Solution is to use a "randomness extractor"

\(\Leftarrow \) Information-theoretic constructions based on universal hashing / pairwise-independent hashing (loses some bits of entropy)
Use a “random oracle” or an “ideal hash function” \(\text{Heuristic: SHA-256 (} g, g^x, g^y, g^z) \) \[\text{binds the key to the entire transcript} \]

- Arguing security: 1. Rely on HashDH assumption \((g, g^x, H(g, g^y, g^z, g^w))^\ast \approx (g, g^x, g^y, r) \)
 - where \(H: G \to \{0,1\}^n \) and \(r \in \{0,1\}^n \)

2. Model \(H \) as ideal hash function \(H: G \to \{0,1\}^n \) (i.e., random oracle) and rely on CDH in \(G \) [inability to evaluate \(H \) on \(g^s \Rightarrow \) output is random string]

Instantiations:
- Discrete log in \(Z_p^* \) when \(p \) is 2048-bits provides approximately 128-bits of security
 - Best attack is General Number Field Sieve (GNFS) - runs in time \(2^{64(1.57)} \) time
 - Much better than brute force - \(2^{127} \)
 - Need to choose \(p \) carefully (e.g., avoid cases where \(p-1 \) is smooth)
 - having small prime factors
 - group operations all scale linearly (or worse) in \(\log \text{bitlength of the modulus} \)

- Elliptic curve groups: only require 256-bit modulus for 128 bits of security
 - Best attack is generic attack and runs in time \(2^{57.1} \) \(\beta \)-algorithm - can discuss at end of semester
 - Much faster than using \(Z_p^* \): several standards
 - NIST P256, P384, P512
 - Dan Bernstein’s curves: Curve 25519 (or in advanced crypto class)

- Widely used for key-exchange + signatures on the web

When describing cryptographic constructions, we will work with an abstract group (easier to work with, less details to worry about)