
Understanding the definition:
Can we learn the leastsignificantbitof a message given only the ciphertext(assuming a semantically - secure cipher)

No! Suppose we could. Then, adversarycan choose two messages mo, m, thatdiffer in their leastsignificantbit
and distinguish with probability 1.

This generalizes to any efficiently - computable propertyof the two messages.

How does semantic securityrelate to perfectsecrecy?

remIacipher satisfiesperfectsecrecy,thenitissemantically
see

PrIkK:Encrypt(K,mo) =c]
=PrIk K:Encrypt (k, m)

=C]

E

quivalently, the distributions

-
Encrypt(K,mo)3 andAnEncrypt(k,mi3

Do Di

are antical (Do = D.). This means thatthe adversary's outputb'is identically distributed in the two experiments, and so

SSAdrIA, TsE] =IWo-Wil =0.

~ encryption key (PRG seed)
seems straightforward,W-lary. The one-time pad is semantically secure. C- 6(s) em ↑ buttakes some care to prove

<

- m =6(s) @ c -
L

orem. Let6 be a secure PRC. Then, the resulting stream cipher constructed from 6 is semanticallysecure.

Prof. Consider the semantic securityexperiments:

Experiment0: Adversarychooses mo, m, and receives co
=G(s) *Mo Wantto show thatadversary's3 outputin these two experiments are

Experiment1: Adversarychooses mo, m, and receives c,
=G(s) * m, indistinguishable

Let Wo = PrIA outputs 1 in Experiment0]

W, =PrIAoutputs 1 in Experiment 1]

Idea:If G(s) is uniform random string (i.e. one-time pad), then Wo =W.. ButG(s) is like a one-time pad!
Define ExperimentO': Adversarychooses Mo, m, and receives co

=tono where to 90,13"

Experiment1: Adversarychooses Mo, m, and receives c:t Am, where *30,13"

Define Wo, W,accordingly.

First, observe thatWo =W, love-time pad is perfectly secure).
Now we show thatIwo-Wo'l=neg) and Iw,-wil > regl.

=>IWo-Wil=/Wo -wo' +W -W, +W!-Wil

>WWo-Wilt (Wo-Wil+IWi-Wil by triangle inequality
=negl. +regl.

=

negl

Typical proof strategy in cryptography:byampositive.

show. If G is a secure PRC, them for all efficientA, IWo-Wil=negl.
Common proof technique:prove the compositive.

oapositive: If Acan distinguish Experiments 0 and 0, then 6 is nota secure PRC.

Suppose there exists efficientAthatdistinguishes Experiment 0 from O'

=>We use A to constructefficientadversary B thatbreaks security of6.

↳

thisstepis areduction(i.e., algorithm) for distinguishing Exp. 0 and O' adversaryfor Pre

Algorithm B (PRG adversary): beE0,13

PR6chal-lenger!-
if b=0 =s50,13*

t =6(s)

Algorithm A if b =1: t=50,13"
Mo,m, EM

⑰m

- I-

Algorithm A
->

<
t

-

expectstogetup the
-

e

+90,1)"
↳'E90,13

Running time ofB =

running time
of A =efficient

Compute PRCAdr[B, 6].

Pr[B outputs 1 if b =0] =Wo =if b =0, then Agets G(s) 8m which is preciselythe behavior in Exp. 8

Pr[Boutputs 1 if b =1) =Wo5 if b =1, then A gets to m which is preciselythe behavior in Exp. C'

=>PRGAdvIB,6] =IWo-Wol, which is non-negligible by assumption. This proves
the contrapositive.

tantnote:Security ofabove schemes shown assuming message space is
10,13" (i.e., all messages are n-bits long)

Empractice:We have length messages. In this case, securityguarantees indistinguishabilityfrom other messages

ofthe same length, butlength itselfis leaked [inevitable if we wantshort ciphertexts)
↳ can be problematic - see traffic analysis attacks!

So far, we have shown thatif we have a PRC, then we can encrypt messages efficiently (stream cipher)

stion: Do PRGs exist?

Unfortunately, we do not know!

n > x
-

flaim:IfPRGswithnon-trivialstretchexistthemo* Nesider the following decision problemthe

on inputto 90,13", does there exist 5540,134such that t =G(s)

This problem is in NP (in particular, is the witness). If G is secure, then no polynomial-time algorithm can solve

this problem (if there was a polynomial-time algorithm for this problem, then itbreaks PRFsecuritywith
advantage I--x I since n < x). Thus, PFNP.

In fact, there cannot even be a mobilistic polynomial-time algorithm thatsolves this problem with probabilitybetter than

I +3 for non-negligible 330. This means thatthere is no BPPalgorithm thatbreaks PRC security:
if PRCs exist, then NP* BPP

↑

bounded error probabilistic polynomial time
"randomized algorithms thatsolves problem with bounded (constant) error"

Thus, proving existence of PRG requires resolving long-standing open questions in complexitytheory!
=>

Cryptography: We will assume thatcertain problems are hard and base constructions ofChopefully small) number of
-

conjectures.
- Hardness assumptions can be thatcertain mathematical problems are intractable (e.g., factoring)
↳ typicallyfor public-key cryptography(and half ofthis course)

- Hardness assumptions can be thatcertain constructions are secure (e.g.,
"

AES is a secure block ciphert
↳

typically for symmetric cryptography
↳

constructions are more ad hoc, rely on heuristics, butveryfastin practice

Examples of stream ciphers (PRGs): designed to be
very

fast (oftentimes with hardware support)
- Linear congruential generator (e.g., rand() function in ()

ri+i
=ari+b (mod m) typical implementation:outputis a

- few bits of No,, r2. ... (full

a,b, m are public constants value of ro, r, r2,.... never revealed)I very simple, easy to implement C
ro is the initial seed especially when m is a power of2)

or (Yi/w)

↳need to choose so outputs have long period
*

a cryptographic PRG: NEVER USE randU) TO GENERATECRYPTOGRAPHIC KEYS?
-

-

Given full outputs, outputs fullypredictable (if enough bits of state revealed, can brute force unknown bits)
-

Even given partial outputs (e.g., leastsignificantfew bits ofoutput) and having secret a, b, m, can still

be broken (linear functions are notsecure!See Boneh-Shoup Ch. 3.7.1 and related papers)
- Often good enough for non-cryptographic applications (e.g., statistical simulation)

-

Linear feedback shift registers (LFSRs) initial state ofLISR
register state ~determined by the seedV

-0(1/1/0/ -> 4R6 output

I ↳s *
very friendly for hardware implementations

W taps (fixed for the construction)
~"linear feedback" it
-- ↳

linear function of register state (addition modulo 2)

Eliteration: rightmostbit is outputby LESR

bits attap positions are xored and shifted in from the left

I clock cycle
=1 outputbit

-

verysimple
and fast!

By itself, LESR is totallybroken:after observing m-bits ofoutput, the entire state ofthe LISR is known and

subsequentbits are completelypredictable!
oposal:Use multiple LFSRS and combine in some non-linear way:

