
Example: CSS (content scrambling system) for DVD encryption [1996]

8 bits
↳> actual CSS encryption has a few differences

,
but

LFSR is

1 bit of

1 S Sit csmIya- obstes

the core attack is fected

↓
40-bit key - C :

carry bit from previous operation (initially 0)

Ineeded to comply with export control restrictions)

- Brute-force attack :

guess the seed (224 time)
-

Can do much better with more clever strategy
↳ idea : -if we know a few bytes of output of the stream cipher and the output of the

17-bit LESR
,

can subtract to obtain output of 23-bit LESR

- brute force the seed of the 17-bit LFSR
,

each gress
induces a state for the 25-bit LESR

- check if output matches or not

↳ Attack now runs in ~2 time

-

By 1999
, full key-recovery attack on can recover key from DVD in just ~18 seconds on 450MHz processor

Itotally broken !]

#examples : GSM encryption (A3/1 , 2 stream ciphers for encrypting GSM cell phone traffic

I
↳

you outputs of 3 LFSRS Snowden documents : NSA can process encrypted
Pre-2000s ↳ tried to keep cipher design private ,

but eventually reverse engineered and attacks found
A511

Never rely on security by obscurity !

Bluetooth EU stream cipher uses a design based on 4 LFSRS in conjuction with a 2-bit finite state

machine - also not secure !
(1987)

-

RC4 stream cipher (widely used - SSL/TLS protocol, 802.11b)

Numerous problems :

bits/initial PRC seed -

Bias in initial output
: Pr [second byte

= 07 = 55 56

↓

*it internal state
↳ When

using
RC4

,
recommendation is to ignore first 256

bytes due to potential bias

↓ ↳ Correlations in output : probability of seeing ,

(0, 0) in output
I I

↓- byte per
round is ess2+ 2563> 552

↳ Given outputs of RC4 with related keys (e.g ., keys sharing
common suffix) , possible to recover keys after seeing
few blocks of output

I
↳ Can be

very problematic on weak devices (who may not

have good sources of entropy(
-

Modern Stream ciphers /eSTREAM project
: 2004 - 2000)

-

Salsa 20 12005) it Chalha (2008)

↳ core design maps 256-bit key ,
64-bit nonce

,
64-bit counter onto a 512-bit output

↑ I Design is more complex:

/
enables using same allows rem access into

- relies on a sequence
of rounds

key (and different nonces) the stream
- each round consists

of 32-bit additions
,

Xors
,to encrypt tiple messages and bit-shifts

Iwill discuss later)

↳
very fast even in software 14-14 CPU cycles/output byte) - used to encrypt TLS traffic between Android and Google

services



Recall : the one-time pad is not reusable (i.e, the two-time pad is totally broken
NEVER REUSE THE KEY TO A STREAM CIPHERI

But wait... we "proved" that a stream cipher was secure
,

and yet ,
there is an attack ?

Recall security game
: bEE0 , 13 erre :

adversaryonlysees re cipherte the

↓
adversary ↳allenger-

Mo
, mi
- k2k

-a C = Encrypt (k
,mp) -> Security in this model says thing

↓ about multiple messages/ciphertexts
b'E50 ,13

Roblem : If we want security with multiple ciphertexts, we need a offerent or stronger definition (CPA security(



⑰nition : An encryption scheme TTSE : (Encrypt, Decrypt) is secure against chosen-plaintext attacks (CPA-secure) if far all efficient

adversaries A :

CPAAdv[A,TsE]
= /Pr[Wo=13 -Pr[W , =13) = negl .

where Wa (b = 90,13) is the output of the following experiment :

b E 90 ,13

↓adversary enger

Mo , m
,

M
---

~it,mansame idea as in original semantic security game, but allow adversary
to make encryption queries (also called a "left-or-right" oracle)

b'E50, 13

I
Adversary's goal is to

guess which of Mo or m
, was encrypted, given access

Ioutput of experiment Wo to an on oracle (i .e
., adversary gets to see encryptions of messages

of its choice
.

Claim
.

A stream cipher is not CPA-secure .

Proof. Consider the following adversary :

be [0, 13

adversary enget
e

choose Mo ,
m

,
EM S=E0, 13

*
PrIb= 1 (b = 0] = 0 Since c = mo * 6(s) = >

where Mofm , PrIb= 1/b = 1] = 1 since = m
,
⑰ 61s) F <

C =momi.e
=> CPAAdvIA

,
TsE]= 1

I

output 0 if C= C

output 1 if (FC

Seve : Above attack works for
any deterministic encryption scheme

.

=>

CPA-secure encryption must be romized
=> To be reusable

,
cannot be deterministic

. Encrypting the same message twice should not reveal that identical

messages were encrypted .

To build a CPA-secure encryption scheme
, we will use a "block cipher"

-

Block cipher is an invertible keyed function that takes a block of a input bits and produces a block of a output bits

-

Examples include 3DES (key size 168 bits
, block size 64 bits)

AES (key size 128 bits
,

block size 128 bits) block ciplers
-

Will define block ciphers abstractly first : pseudorandom functions (PRFs) and pseudorandom permutations (PRPs)

-

↳ General idea :

retsbehave like dow functioois



Definition A function F : Rx Xt Y with key-space K
, domain X

,
and range Y is a pseudorandom function (PRF) if for all

-

efficient adversaries A
, /Wo-Wil= negl ., where Wo is the probability the adversary outputs 1 in the following

experiment : be E0, 13

adversary gert
k = K; f(1= F(K ,. ) if b = 0

f & Funs[X, y] if b = 1

↳T 1the space of all possible functions from X - y

(function f Funs[X, Y] can be represented by a truth table of-
R

size (y/X) - this is usually exponentially large !

b'E90, 13

PRFAdvIA
,
F) = /Wo-W , l= IPr[A outputs 1 (b = 03 - Pr[A outputs 1(b = 1])

Fuitively : input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally-bounded
adversary)

3DES : 90
,
13 x 50, 1344 - 90 ,134 191 = 2168 /Funs[x

,
y3) = (26)(2

*4)

191=3R0 /Funs[x, y3)= (218 >
(248) I space of random functions is

AES : 30 , 1328 x [0 ,340 - 90, 1348 exponentially-larger than key space!

Knition : A function F : KxX+ X is a pseudorandom permutation (PRP) if
- for all keys k

,
FCK,) is a permutation and moreover

,
there exists an efficient algorithm to compute

F-1Ck
,

1) :

FKEK : AxeX : Fk
,
F(k

, x)) =

x

- for IK
,

the input-output behavior of FCK
,

1) is computationally indistinguishable from f() where

f & PermIX] and Perm[X] is the set of all permutations on X Canalogous to PRE security

*: a block cipher is another term for PRP (just like stream ciphers are PROs)


