
Observe that a block cipher can be used to construct a PRC :

F : 90,13 x 90, 13" + 90,13" be a block cipher
en

Define 6 : 90,134 - 90, 13 as

G(k) = F(k
, 1) 11F(k

,
2711 ... 11 F(k,

- this stream cipher allows dow access !

↑

string concatenation write input as an n-bit string

we said PRP above just require that < loge)
(will revisit this)

W
#

em . If F is a secure PRF
,

then G is a secure PRG
.

Proof . As usual
, we show the contrapositive: if 6 is not a secure PRO,

then F is not a secure PRF
.

Suppose we have efficient adversary A for 6
.

We use A to build adversary for F :

b E 30, 13

Expects to see
Algorithm for breaking F

challenger for
F4

1
. If 1 =

poly ,
then B is efficient

-

b = 0 : k=k ; + = 6(k) b = 0 : k = k ; f = F(k,)
2

.
If b = 0 : B sends G(K) to A

b =1 : t = 20,13 b = 1 if Funs[30,"
,

[0,13"]& I 1 1 where k is a uniformly
Algorithm A - random key

ne If b =1 : B sends uniformly random
fill ...

fel--

e
string If is adom function)Fran me to A

en

b'E [0, 13 3
. PRFAdvIB

,
F] = Pr[b= 11 b =0] -

4r[b= 1)b = 1))
= IPr[A outputs 11 b = 0] -Pr[A outputs =(b=1)
= PRCAdv[A

, 6]

which is non-negligible by assumption .

But... we used a block cipher (PRP) in our construction above.
Does the proof still

go through?

Not quite ...

for a random function
,
f(1) = f(z) with probability In 3 but I might be

very very small
...

for a random permutation,
f(1)= f(z) with probability O adversary won't notice unless it sees a

"collision" [i .e
.,

two values x
,y

where

f(x) = f(y))

witchingLemma.
Let F : K** - & be a secure PRP

.
Then

,
for

any Q-query adversary A :

IPRPAdv[A
,
FS - PRFAdr[A,F3) < cY

⑱oIdea
. Adversary essentially cannot tell the difference unless it sees a collision

. If there is no collision
,

then it is just
seeing random values. How

many queries before there is a collision ? Birthday paradox
: Q - 11

-away
: If IXI is large (e.g, exponential) ,

then we can use a PRP as a PRF
.

- 3DES: 64 So 141, 264Eitadversarymus 232queriesthercanwaritas
aa se

far : PRP/PRF in "counter mode" gives us a stream cipher (one-time encryption scheme)

I typically ,
the IV is divided into a

wereuse it? Choose a dom Starting point (called an initialization rector↳ nonce/value that does not repeat) and

"randomized counter mode" a counter : IV = noncell counter

levelany
divide message into blocks (based on block size of PRES

#

<2/cs / () Ciphertext

serve : ciphertext is longer than the

message (required for CPA security)

rem: Let Fil** -y be a secure PRE and let McR denote the randomized counter mode encryption scheme

from above for -block
messages (M

= x xe)
.

Then
,

for all efficient CPA adversaries A
,

there exists an

efficient PRE adversary B such that

CPAAdvIA
,TciR]

+

2 . PREAdrIB
,
FS

&

Q : number of encryption queries
1 : number of blocks in message

Inition : 1
.

If there are no collisions (i.e
., PRF never evaluated on the same block)

,
then it is as if everything is

encrypted under a fresh one-time pad.

2
.

Collision event : (X
,

X+1
, . .

.,
x + l-1) overlaps with (X

,
x'+1

, . . ., x'+l-1) when x
,
x & X

-
X -ex x+ l

↑

probability that x' lies in this interval is

There are
<Q

possible pairs (x
,
x')

, so by a union bound
,

PrIcollision] =I
3

. Remaining factor of 2 in advantage due to intermediate distribution (hybrid argument) :

Encrypt mo with PRE ? PRFAdr[B,F] +I
Encrypt mo with fresh one-time pad

E O

Encrypt M
, with fresh one-time pad

$PRFAdr[B ,
FS+Encrypt m

, with PRF

Ierpretation
: If (x) = 248 (e.g., AES)

,
and messages are /MB long (2 blocks) and we want the distinguishing advantage

to be below 2-32
,

ther we can use the same key to encrypt
-

-
a =

5
=/ = 120 = 23 (/trillion messages !)

-basedcounter mode : divide IV into two pieces
: IV = noncell counter

↑
value that

does not repeat
common choices : 64-bit nonce,

64-bit counter & only nonce needs to be sent !

96-bit nonce
,

32-bit counter Islightly smaller ciphertexts)

Only requirement for security is that IV does not repeat :

-

Option 1 : Choose randomly (either IV or nonce)
-

-

n 2 : If sender + recipient have shared state (e.g. packet counter)
,

can just use a counter
,

in

which case ,
IV/nonce does not have to be sent

(CTR)
Counter mode is parallelizable, simple-to-implement , just requires PRE -

preferred mode of using block ciphers

Other block cipher modes of operation :

Cipherblock chaining (CBC) : common mode in the
past (e.g.,

TLS 1 .
0

, still widely used today)

b

v

domly ↓!-chosen 7 Observe: need v

e

ciphertext #
Encryption not jus PRE)

rem: Let F : 1** -Y be a secure PRE and let Tcsc denote the CBC encryption scheme for -block

messages (M
= x-)

.
Then

,
for all efficient CPA adversaries A

,
there exists an efficient PRE adversary

B such that

CPAAdvIA
, TcBc] a +

2 . PREAdrIB
,
FS

&

Q : number of encryption queries
1 : number of blocks in message

Intuition : similar to analysis of randomized counter mode :

1 . Ciphertext is indistinguishable from random string if PRP is evaluated on distinct inputs
1

.
When encrypting ,

PRP is invoked on I random blocks
,

so after Q queries ,
we have Gl random blocks

.

--> Collision probability - A this is larger than collision prob for randomized counter mode by a

factor of E Toverlap of Q random intervals vs .
Q random points]

3. Factor of 2 arises for same reason as before

Enterpretation .

CBC mode provides weaker security compared to counter mode : e us.
Concretely

: for same parameters as before //MB messages,
2 distinguishing advantage) :

a< = = 163=e
.

(v) billion messages)

↳
2
?3-180x smaller than using counter mode

↳inCBC mode : each ciphertext block is computed by feeding a message block into the PRP

=>)
message must be an even multiple of the block size

=
When used in practice,

need to pad messages

Can we pad with zeroes
? Cannot decrypt ! What if original message ended with a bunch of zeroes ?

Firement : padding must be invertible

CBC padding in T2S 1 . 0 : if In bytes of pudding is needed
,

then append In bytes to the end
,

with each byte set to k-1

(for AES-CBC) if 0 bytes of padding is needed
,

then append a block of 16 bytes ,
with each byte equal to 13

↳ dummy block needed to ensure pad is invertible I injectivefunctions must essa
e 1↳ called PKCS#3/PKCS#7 (public-key cryptography standards)

Need to pad in CBC encryption can be exploited in "padding oracle" attacks

Padding in CBC can be avoided
using idea called "ciphertext stealing" (as long as messages are more than I block)

interesting traffic analysis attack :

each keystroke is sent in separate
packet , so # packets leaks info on length-of user's password !

-Comparing CTR mode to CBC mode : e
imagine 1 byte messages

-mode CBC mode

1.

-
e

over SSH I
no padding needed (shorter ciphertexts) 1. padding needed ((e.g, encrypted key stroke

2 . parallelizable 2. Sequential I block + I byte with CTR

2 blocks with CBC
3

. only requires PRF (no need to invert) 3 . requires PRP <I
4. Fighter security 4. less tight security requires more structured primitive,
5

.
IUs have to be non-repeating jeasy to implement : Cre-key more often) more code to implement forward

and backward evaluation
land spaced far apart) IV = noncell counter 5

. requires aptable IVs
↑

only needs to be
*

TLS 1 . 0 used predictable IVs

non-repeating (can be predictable) (see HWI for an attack)
SSH vI used a 0 IV

Leven worse ! (

Bm-line : use randomized or nonce-based counter mode whenever possible
:

simpler ,
easier

,
and better than CBC

A tempting and had way
to use a block cipher : ECB mode (electronic codebook)

Scheme is deterministic ! Cannot be CPA secure !

· I (mo
, mo) vs

.
(mo

,
M .) where mi mo

Not even semantically secure !

q &

ciphertext blocks output
ciphertext blocks

are different
output are same

Encryption
:

simply apply block cipher to each block

of the message

Cryption : simply invert each block of the ciphertext

NEVER USE ECB MODE FOR ENCRIPTION &

