Basic Definitions

- A finite probability space \((\Omega, p)\) consists of a finite set \(\Omega = \{\omega_1, \ldots, \omega_n\}\) and a probability mass function \(p: \Omega \rightarrow [0, 1]\) such that \(\sum_{\omega \in \Omega} p(\omega) = 1\). We refer to \(\Omega\) as the sample space and \(\omega_i\) as a possible outcome of a probabilistic event. Throughout this handout, we will only consider finite probability spaces.

- An event \(E\) over a probability space \((\Omega, p)\) is a set \(A \subseteq \Omega\). The probability of event \(E\), denoted \(\Pr[E]\), is defined to be \(\Pr[E] := \sum_{\omega \in E} p(\omega)\). For an outcome \(\omega \in \Omega\), we will write \(\Pr[\omega]\) to denote \(p(\omega)\).

- A random variable \(X\) over a probability space \((\Omega, p)\) is a real-valued function \(X: \Omega \rightarrow \mathbb{R}\). For the remainder of this handout, we will assume all random variables are defined over a probability space \((\Omega, p)\).

Expected Value and Variance

- The expected value \(\mathbb{E}[X]\) of a random variable \(X\) is defined to be
 \[
 \mathbb{E}[X] := \sum_{\omega \in \Omega} X(\omega) \Pr[\omega].
 \]

- **Linearity of expectation**: For all random variables \(X, Y\) and all \(\alpha, \beta \in \mathbb{R}\),
 \[
 \mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y].
 \]

- The variance \(\text{Var}(X)\) of a random variable \(X\) is defined to be
 \[
 \text{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.
 \]

Useful Bounds

- **Union bound**: For every collection of events \(E_1, \ldots, E_n\),
 \[
 \Pr\left[\bigcup_{i \in [n]} E_i\right] \leq \sum_{i \in [n]} \Pr[E_i].
 \]

- **Markov’s inequality**: Let \(X\) be a non-negative random variable. For all \(t > 0\),
 \[
 \Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}.
 \]
• **Chebyshev’s inequality:** Let X be a random variable. For all $t > 0$,

$$\Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}(X)}{t^2}.$$

• **Chernoff bounds:** Let X_1, \ldots, X_n be independent binary-valued random variables (i.e., the value of X_i is either 0 or 1). Let $X = \sum_{i \in [n]} X_i$ and $\mu = \mathbb{E}[X]$. Then, for every $t > 0$,

$$\Pr[X \geq (1 + t) \mu] \leq \left(\frac{e^t}{(1 + t)^{1+t}}\right)^\mu$$

$$\Pr[X \leq (1 - t) \mu] \leq \left(\frac{e^{-t}}{(1 - t)^{1-t}}\right)^\mu.$$

Often, the following simpler (and looser) bounds suffice:

$$\forall 0 \leq t \leq 1, \quad \Pr[X \leq (1 - t)\mu] \leq e^{-t^2/2}$$

$$\forall 0 \leq t, \quad \Pr[X \geq (1 + t)\mu] \leq e^{-t^2/2t.}$$

Another useful variant (by Hoeffding) gives a bound on the sum of any sequence of bounded random variables. Specifically, let X_1, \ldots, X_n be independent random variables where each $X_i \in [a_i, b_i]$ for $a_i, b_i \in \mathbb{R}$. As before let $X = \sum_{i \in [n]} X_i$ and let $\mu = \mathbb{E}[X]$. Then, for all $t > 0$,

$$\Pr[|X - \mu| \geq t] \leq 2 \exp\left(-\frac{2t^2}{\sum_{i \in [n]} (b_i - a_i)^2}\right).$$

For the special case where $X_i \in [0, 1]$ for all $i \in [n]$, the bound becomes

$$\Pr[|X - \mu| \geq t] \leq 2e^{-2t^2/n}.$$

Example 1. Suppose X_1, \ldots, X_N are independent binary-valued random variables where $\Pr[X_i = 1] = \frac{1}{2} + \epsilon$. Let $\bar{X} = \frac{1}{N} \sum_{i \in [N]} X_i$. If $N = \lambda/e^2$, then

$$\Pr[\bar{X} \geq 1/2 + \epsilon/2] \geq 1 - \text{negl}(\lambda).$$

This follows by a direct application of the Chernoff/Hoeffding bound:

$$\Pr[\bar{X} < \frac{1}{2} + \frac{\epsilon}{2}] = \Pr\left[\sum_{i \in [N]} X_i - N \left(\frac{1}{2} + \epsilon\right) < -\frac{\epsilon}{2} N\right] \leq 2e^{-\epsilon^2 N^2/2N} = 2e^{-\lambda/2} = \text{negl}(\lambda).$$

Averaging Argument

The basic averaging argument states that if $X_1, \ldots, X_n \in \mathbb{R}$ are values with mean $\mu = \frac{1}{n} \sum_{i \in [n]} X_i$, then there exists at least one $i \in [n]$ where $X_i \geq \mu$. There are several variants of this fact that often come in handy:

Lemma 1. Let $X_1, \ldots, X_n \in [0, 1]$ whose average is μ. Then at least an ϵ-fraction of the X_i’s are at least p where $\epsilon = \frac{\mu - p}{1 - p}$.

Proof. Let t be the fraction of X_i’s where $X_i \geq p$. Then, $\mu < (1-t)p + t = p + (1-p)t$, so $t > (\mu - p)/(1-p)$. □

We state two immediate corollaries of Lemma 1 that are often useful:
Corollary 2. If $X_1, \ldots, X_n \in [0,1]$ whose average is μ, then at least a $(\mu/2)$-fraction of the X_i’s are at least $\mu/2$.

Corollary 3. Let $X_1, \ldots, X_n \in [0,1]$ whose average is $\mu = p + \varepsilon$. Then, at least an $\frac{\varepsilon}{2(1-p-\varepsilon/2)} > \frac{\varepsilon}{2(1-p)}$ fraction of the X_i’s are at least $p + \varepsilon/2$.

Example 2. Let f be a function. Suppose we have an algorithm \mathcal{A} where

$$\Pr[x \xleftarrow{\$} \{0,1\}^n, y \xleftarrow{\$} \{0,1\}^n : \mathcal{A}(x,y) = f(x)] = \frac{11}{12}.$$

We say a string $y^* \in \{0,1\}^n$ is “good” if

$$\Pr[x \xleftarrow{\$} \{0,1\}^n : \mathcal{A}(x,y^*) = f(x)] \geq \frac{3}{4}.$$

By an averaging argument (Lemma 1), at least a $2/3$-fraction of y’s are good (i.e., set $\mu = 11/12$ and $p = 3/4$). Namely,

$$\Pr[y \xleftarrow{\$} \{0,1\}^n : \Pr[x \xleftarrow{\$} \{0,1\}^n : \mathcal{A}(x,y) = f(x)] \geq 3/4] \geq 2/3.$$

Example 3. Let f be a function. Suppose we have an algorithm \mathcal{A} where

$$\Pr[x \xleftarrow{\$} \{0,1\}^n, y \xleftarrow{\$} \{0,1\}^n : \mathcal{A}(x,y) = f(x)] = \frac{1}{2} + \varepsilon.$$

We say that a string $y^* \in \{0,1\}^n$ is “good” if

$$\Pr[x \xleftarrow{\$} \{0,1\}^n : \mathcal{A}(x,y^*) = f(x)] \geq \frac{1}{2} + \frac{\varepsilon}{2}.$$

By an averaging argument (Corollary 3), at least an ε-fraction of y’s are good. Namely,

$$\Pr[y \xleftarrow{\$} \{0,1\}^n : \Pr[x \xleftarrow{\$} \{0,1\}^n : \mathcal{A}(x,y) = f(x)] \geq 1/2 + \varepsilon/2] \geq \varepsilon.$$