
How do we combine confidentiality and integrity ?
↳ Systems with both guarantees are calledauthenticatedencryption schemes - gold standard for symmetric encryption

Tonatural options" :

1. Encrypt-then MAC (TLS 1 .2+, IPsec) ↑

guaranteed to be secure if we instantiate using CPA-secure encryption
2 . MAC-then-encrypt (SSL3.0/TLS 1. 0

,
802.

11 :)
and a secure MAC

as we will see
, not always secure

Definition. An encryption scheme TIE : (Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:

- CPA security I confidentiality]
-

ciphertext integrity [integrity]

change
-

output c
special symbol t to denotedid cipeti

Define CIAdv[A
,
IsE] to be the probability that output of above experiment is 1. The scheme TISE satisfies

ciphertext integrity it for all efficient adversaries A,

CIAdv[A
,
TIse] = negl.(x)

↑

security parameter determines key length

Ciphertext integrity says adversary cannot come up
with a new ciphertext : only ciphertexts it can generate are those that are

alreadyralid. Why do we want this property ? Encrypted under KA
ka

,
k ke

Consider the following active attack scenario : #Bo
-

mail server

-

Each user shares a key with a mail server

↳ Alice Ke-

To send mail, user encrypts contents and send to mail server

- Mail server decrypts the email
, re-encrypts it under recipient's key and delivers email

Eve intercepts and
Encrypted under

modifies message
Encrypted under KA

If Eve is able to tamper with the encrypted message,

Finethen she is able to learn the encrypted contents (even if

KA

milsanthe scheme is CPA-secure)
-> More broadly ,

an adversary can tamper and inject ciphertexts

into a system and observe the user's behavior to learn information

about the decrypted values- against active attackers, we need tyer notion of security



Definition .
An encryption scheme TIE (Encrypt, Decrypt) is secure against chosen-ciphertext attacks (CCA-secure) if for all efficient

adversaries A
,

CCAAdvIA
,
ITSE] = negl. where we define CLAAdvTA,

TISE] as follows :

bE90, 13

adversary challenges !-

=
adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertexts it received from the

CCAAdrIA ,
TIse] = /Pr[b' = 1/ b = 0] - Pr[b = 11b = 1]) challenger (otherwise, adversary can trivially break security (

↳> called an "admissibility" criterion

CCA-security captures above attack scenario where adversary can tamper with ciphertexts
↳ Rules out possibility of transforming encryption of XIIz to encryption of yllz
↳ Necessary for security against active adversaries [CPA-security is for

security againstessive adversaries]
-> We will see an example of a real CCA attack in HW1

Theorem. If an encryption scheme The provide authenticated encryption,
then it is CCA-secure.

ProfLideal
.

Consider an adversary A in the CCA-security game. Since TISE provides ciphertext integrity ,
the challenger's response

to the adversary's decryption query will be 1 with all but negligible probability. This means we can implement the

decryption oracle with the "output 1" function. But then this is equivalent to the CPA-security game.

[Formalize using a hybrid argument] simple counter-example : concatenate unused bits to end of ciphertext
in a CCA-secure scheme (stripped away during↓ decryption)

Note: Converse of the above is not true since CCA-security # ciphertext integrity.
↳ However

, CCA-security + plaintext integrity-
> authenticated encryption

#ke-away : Authenticated encryption captures meaningful confidentiality + integrity properties ; provides active security

&Encrypt-then-MAC : Let (Encrypt, Verify) be a CPA-secure encryption scheme and (Sign, Verify) be a secure MAC. We define

Encrypt-then-MAC to be the following scheme :

Encrypt'((kE,
km)

,
m) : c = Encrypt (kE,

m)
↑ X

independent keys
t - Sign (km

,
c)

output (c
, t)

Decrypt" ((kE,
km)

, (c+)) : if Verify (km
,

c
,
+) = 0

, output
else

, output Decrypt (kE ,
c)



Itheorem .
If (Encrypt, Decrypt) is CPA-secure and (Sign, Verify) is a secure MAC

, then (Encrypt , Verify') is an authenticated

encryption scheme
.

#roof.
(Sketch)

. CPA-security follows by CPA-security of (Encrypt, Decrypt). Specifically,
the MAC is computed on ciphertexts and not

the
messages .

MAC key is independent of encryption key so cannot compromise CPA-security.

Ciphertext integrity follows directly from MAC security (i .e ., any valid ciphertext must contain a new tag on some

ciphertext that was not given to the adversary by the challenger ?

Emportantnotes : - Encryption + MAC keys must beindependent. Above proof required this (in the formal reduction
,

need to be able to

simulate ciphertexts/MACs-only possible if reduction can choose its own key).

↳ Can also give explicit constructions that areompletelybroken if same key is used (i.e.,
both properties fail to

hold)
↳ In general , never rese cryptographic keys in different schemes ; instead

, sample fresh, independent keys !

-

MAC needs to be computed over the entire ciphertext
-

Early version of ISO 19772 for AE did not MAC IV (CBC used for CPA-secure encryption) ↑ meansfirsa header)
·

RNCryptor in Apple :OS (for data encryption) also problematic (HMAC not applied to encryption IV) 1 is malleable

AC-then-Encrypt : Let (Encrypt, Verify) be a CPA-secure encryption scheme and (Sign, Verify) be a secure MAC. We define

MAC-then- Encrypt to be the following scheme :

Encrypt' ((kE,
km)

,
m) : - Sign (km

,
m)

c - Encrypt (KE
,

(m
,t))

output a

Decrypt" ((kE,
km)

,
(c

,
+)) :

compute (mit) = Decrypt (KE,
c)

if Verify (km ,
m

,
t) = 1

, output m
,

else
, output I

Not generally secure ! SSL 3 . 0 (precursor to TLS) used randomized CBC + secure MAC

->
Simple CCA attack on scheme (by exploiting padding in CBC encryption)

[POODLE attack on SSL 3.0 can decrypt all encrypted traffic
using a CCA attack]

Padding is a common source of problems with MAC-then-Encrypt systems[see HW] for an example]

In the past,
libraries provided separate encryption + MAC interfaces

-

common source of errors

-> Good library design for crypto should minimize ways
for users to make errors

, not provide more flexibility

Today ,
there are standard block cipher modes of operation that provide -authenticatedencryption

- One of the most widely used is GCM (Galois counter model - standardized by NIST in 2007

mode:followsency-the-MACparadigms
enter mode Most commonly used in conjuction with AES

- MAC is a Carter - Wegman MAC
& CAES-GCM provides authenticated encryption)

↳ "encrypted one-time MAC"



-CMencryption : encrypt message with AES in counter mode -key derived from PRE

compute Carter-Wegman MAC on resulting message using
CASHis

as

underlying hash function
evaluation at oh

and the block cipher as underlying PRE ↑ GHASH operates on blocks of 128-bits

operations can be expressed as operations over

Typically , use ESGCM for authenticated encryption GF (218) - Galoisfield with 218 elements

implemented in hardware -

very
fast !

Oftentimes
, only part of the payload needs to be hidden

,
but still needs to beauthenticated

↳ e. g., sending packets over a network : desire confidentiality for packet body, but only integrity for packet headers(otherwise
,

cannot route !)

AEAD : authenticated encryption with associated data

↳
augment encryption scheme with additional plaintext input ; resulting ciphertext ensures integrity for associated data

,
but not confidentiality

Iwill not define formally here but follows straightforwardly from AE definitions)
↳

can construct directly via "encrypt-then-MAC" : namely, encrypt payload and MAC the ciphertext + associated data

↳ AES-GCM is an AEAD scheme


