
We will now introduce some facts on composite- order groups :

Let N =

pg be a product of two primes p, g.

Then
, EN

= 50
,

1
, ..., N-13 is the additive group of integers

modulo N
.

Let* be the set of integers that are invertible (under ~multiplication) modulo N.

X ** if and only if ged (x
,N) = 1

Since N =

pg and
p,g are prime, gcd(X,

N) = 1 unless X is a multiple of p or g:

II* = N -

p
-

g + 1 =

pq
-

p
-

g + 1 = (p- 1)(g- 1) = 4(N)
*

Euler's phi function

Recall Lagrange's Theorem : (Euler's totient function)
for all XI: XPIN) = 1 (modN) (called Euler's theorem

,
but special case of Lagrange's theorem]

↑
important : "ring of exponents" operate modulo 4(N) = (p- 1) (g- 1)

Hard problems in composite - order groups
:

-

Factoring :
given N =

pg
where pand g are sampled from a suitable distribution over primes, output p, 9

-

Computingcube roots : Sample random X ***. Given
y

=x (modN)
, compute X (modN)

.

↳ This problem is easy in (when 3 xp-1) . Namely , compute 3" (mod p-1) , say using
Endid's algorithm ,

and

then compute"" (mod p) = (x3)" (modp) = X (mod p).Y
->

Why does this procedure not work in*. Above procedure relies on computing 3 (mod /[N)) = 3" (mod Y(N1)

But we do not know Y(N) and
computing 4(N) is-shard as factoring N

. In particular, if we

know N and Y(N)
,

then we can write

E N =

pq [both relations hold over the integers]
Y(N) = (p-1)(q- 1)

and solve this system of equations over the integers (and recover p
, g)

Hardness of computing cube roots is the basis of the &SAassumption :

distribution over prime numbers /size determined by security parameter 1)

#Aassumption : Take pig
-> Primes

,
and set N =

pg. Then
,

for all efficient adversaries A
,

I
PrEXEZ ; y

= AIN
,
X) :y= XSFre, , can replace 3 with any e where god(e, y(wil 7

↑
common choices :HardnessofRSA resonG beinghandtocompute ,

and thus
,

on hardness of factor,as
e = 3

e = 65537

Hardness of factoring/RSA assumption :

(SogN)
- Best attack based on general number field sieve (GNFS) -

runs in time- 2

Isame algorithm used to break discrete log over <p
*

) large key-sizes and computational
-

For 112-bits of security ,
use RSA-2048 (N is product of two 1024-bit primes) cost - ECC generally

preferred over RSA
128-bits of security,

use RSA-3072

-

Both prime factors should have insimilar bit-length (ECM algorithm factors in time that scales with smaller factor(



Naive approach (common "textbook" approach) to build signatures :

Setup : Sample (N
, e

,
d) where N =

pg and ed = 1 (mod Y(N)

=
d Output VK = (N

, e) and sk = d Looks tempting (and simple) ...

Sign (sk
, m) : Output o md (mod NI & butallybroken !
l

Verify (vk , m. 0) : Output 1 if G = m (mod N)

ed mod Y(N)
Correctness : Suppose o = md. Then GC = (md) =

m

= m (mod N)

Security : Signature on m is an eth root of m
-

security should follow from RSA

FALSE !

↳ This is not true ! RSA says that computing eth root of random XEK* is hard
,

not that it is hard

for all inputs XEIN . But in the case of signatures ,
the message is the input. This is not only

not random
,

but in fact
, adversarially chosen !

↳ Very easy to attack. Consider the O-query adversary :

Given verification key vk = (N ,e)
,

take any OEC* and compute m
= of (mod N).

By construction
,o is a valid signature on m.

Signatures from RSA (the full domain hash) :

In order to appeal to RSA
,

we need the signature to be an et root of a random value

#dea: hash the message first and sign the hash value (often called "hash-and-sign")
↳ Anotherbenefit : Allows signing long messages (much larger than**)

some (partial) attacks can

exploit very small public exponent

RSA-FDH signatures : (e
= 3)

Setup : Sample modulus N
,

e
,
d such that ed = 1 (modY(N)) -

typically e = 3 or c = 65337

Sign (output vK
:

(Neande
& Here

, we are assuming that H
maps into #* ]

Verify (vK
,
m ,
o) :

output 1 if H(m) = o and 0 otherwise from 50 , 13
*

to*
-

Theorem
.
Under the RSA assumption and modeling H as an ideal hash function" (i .e

.,

"

random oracle") then RSA-FDH vain

is a secure digital signature scheme.

#o Idea: Signature is deministic ,
so to succeed

, adversary has to forge on an unqueried message m.

Signature on m is eth root of H(m)
-> Adversary has to compute eth of H(m)

,
which is a random value (SinceHismoduleaa

Computinge root of random target is hard under RSA

Reduction also needs toanswer signing queries
- relies on "programming" the random

oracle



M

&andard : PKCS1 v1 .5 (typically used for signing certificates)
↳ Standard cryptographic hash functions hash into a 256-bit space (e.g.,

SHA-256)
,

but FDH requiresAdomain

-> PKCS1v1.
5 is a way to lead hashed message before signing:

#OffFF ... FFFF OODI I
message hash (e.g. computed using SHA-256)-I

16 bits pad
digest info

Je.g., whichhashfunctiona

&

Padding important to protect against chosen message attacks (e.g., preprocess to find messages m ., Mc
,

my where H(m,) = H(mz) · H(ms)
(but this is not a full domain hash andnot prove security under RSA-can make stronger assumption ...)

An aside : blind signatures from RSA client can interact with a server to obtain signature on a 1I
message m without server learning the message that was signed

vk = (N
,
e)

dient server (sk = d)
-

rEIN

#Hale
e

↓

5= Z/r

Observe that w = / =
(H(m)re)/ = H(m)= H(m) modN I since ed = 1 mad Y(N)

Moreover
,

server does not learn the message
: re is uniform over <* !with all but negligible probability I

so it perfectly hides H(m)


