
-Mutualauthentication : Bank has certificate identifying public key for PKE scheme

Alice has certificate identifying public key for signature scheme

/
certAlice ↓ (k, Alice) = Dec (skBank, c)

check Alice matches id in certificate
k
,
Bank k

,
Alice Check Alice's signature on Cr

,
C
,
"Bank") under plaice in certalise

Above protocol provides static (no forward secrecy) mutual authentication

Most variants to this protocol are broken! AKE very delicate:

-

Example: Suppose Alice encrypts (K
,
r) instead of (k

, "Alice") like in the server-auth protocol above
- Vulnerable to "identity misbinding" attack where Alice thinks she's talking to Bank but Bank thinks it's talking to Eve :

#
oSign(skere , Cr, c , "Bank")) => Bank thinks it's talking to Eve

certEre

if Alice now sends "deposit this check into my account" to Bank,

Bank deposits it into Eve's account !

& observe that Eve did not break secrecy
(she does not know k)

,
but nevertheless

,
broke

consistency

Above protocols supported by TLS 1.2 , but deprecated in TLS 1.3 due to lack of forward secrecy

totally broken without signature,
adversary can replace plTo get forward secrecy

,useemerkey. ↳
with pl and
learn Alice's

/Sig
for signature a

&
Provides one-sided authentication chosen key

(signature binds yk to Bank)

Forward secure since each pl used only once
↓ k = Dec(sk

,
c)
,

and long-term secret iseigning key
k
,
Bank k

,
I delete sk

↓
hardware security module (used to protect cryptographic secrets)

Problem : Does not provide "HSM security"
-> Suppose adversary breaks into the bank and learns a single (pk', sk'l pair with oSign /Skank , pk)
↳

Adversary can now impersonate the bank to any
client :

adversary always use the message (pk , certank , of
↑ can decrypt keys for all clients that responds !

& defending against this requiresstress from client

Mobile User

#I Provides HSM Security
: client choosesh pk each time

,
so signatea

on pl functions as a "proof" that the other

↓

I
↓ party possesses signing key for id identified by

1
,

Bank" k,
cert

Bank

In
many cases, also want to hide the endpoint (the id identified by cert)

Possible by encrypting two keys (k, k') and
using

k' to encrypt certzank

Diffie-Hellman key-exchange : substitute Diffie-Hellman handshake for the PKE scheme (simpler)
(TLS 1.2

,
1.3)

TLS 1 .3 and authenticated key-exchange protocols on the Internet typically provide osided authentication (i.e
.,
client learns id of

the server, but not vice versal

Question : how does the client authenticate to the server (without providing a certificate)
->

e.g., how does client login to a web service?

client and server assumed to have Je.g, client has a password and serve I#pical setting : some shared state has an HMAC of the password
(sk) (uk)
client Server

->

AKE protocol 3 not replace this with anonymous key exchange
-

client learn.......................................
- becomes vulnerable to a man-in-the-middle attack
-server's identity identification protocol
-

#todAdversary's goa istoauthenticatetoreseauthenticate
Le.g., physical analogy : door lock

-

adversary can observe the lock
,
does not see the key sk)

Eavesdroppingattack : adversary gets to observe multiple interactions between honest client and the server

Le.g., physical analogy : wireless car key
- adversary observes communication between car key and car)

#tireattack : adversary can impersonate the server and interact with the honest client

le.g ., physical analogy
:fake ATM in the mall - honest clients interact directly with the adversary

Simple (insecure) password-based protocol :

tenlakipodspood
Server [vk : pwd]

↓

accept if vk = pod

Not secure even against direct attacks ! Adversary who learns vK can authenticate as the client adversary who breaks into server

learns user's password !
&

NEVER STORE PASSWORDS IN THE CLEAR !

Eightlybetter solution : hash the passwords before storing server maintains mappings
Alice H(produtice)
BobH H(prdpob)

whereH is a collision-resistant hash function

Client [sk: pwd] server [vk : H(pwdl]
pud
-

↓
accept if

vk = H(pwa)

