
If passwords have high entropy ,
then hard to recover prod from H(pwdl [by one-wayness of H]

↳ But not true in practice...

Users often choose weak passwords (e.g.,
123456

, password , 123456789,
...)

↳ With a dictionary of 360 million entries
,

can cover about 25% of user passwords Based on password hashes that have

13% choose 123456) 3 been leaked from compromised
databases

110% choose
among top 25 common passwords)

Simple hashing vulnerable to "offline dictionary attack."

adversary computes table (pwd , H(pwd)) for common passwords -

completely offline

given H(pwd), can now invert with a single lookup if pwd is contained in the database

for LinkedIn breach in 2012, attacker stole password file with ~6 million passwords
Call passwords hasted using single iteration of unsalted SHA-1) -> 90% of passwords recovered in 6 days !

Problem: One-time precomputation (computing the lookup table) can becaused to compromise many passwords
Overall cost of attack : 0 (m + n) where m is the dictionary size and n is the number of passwords to attack

Defense#1 : Salt passwords before hashing : namely when storing password prod , sample salt 50,
13" and store

(salt
, H(salt1) pwd)) on the server ↑

Note : Sult is apublic value (needed for verification) typically ,
n?64

Offline dictionary attack no longer effective since every sult value induces different set of hash values

Overall cost of dictionary attack : 0(mn) - need to re-hash dictionary for
every sult

Defense#2 : Use aow hash function [SHA-1 is
very fast - enables fast brute-force search]

- PBKDF2 (password-based key-derivation function) : iterate a cryptographic hash function
many

times :

(or berypt) honest user only needs to evaluatePBKDF2(pod ,salt)sales - hash function once per authentication;

1,000,000 iterations of SHA-256 adversary evaluates many times

Frawback : custom hardware can evaluate SHA-256 my fast
-

scrypt(morrecent
:

Argondi:slowhashfunctionthat needslotsofmemoryspace)toear
see

Can also use a led hash function (e.g.,
HMAC with key stored in HSM)

↳
ensures adversary who does not know key cannot brute forceall !

Bestpractice : Always salt passwords
Always use a slow hash function (e.g.,

PBKDF2, scrypt) or keyed hash function or both !

raw MD5 hash - not secure! Facebook password onion

&salted,keyedtieemote service) ↓
(circa 2014)

layers gradually added over time to

slow hash function achieve better security

(and probablytowid pasoas

Password-based protocol not secure against eavesdropping adversary
ladversary sees vi and transcript of multiple interactions between honest prover

+ honest verifier)

One-time passwords (SecurID tokens
, Google authenticator

,
Doa

-struction:Consider settingwhereverificationkey kisetleg,Serverhas a ce
a

client (k
,

c) server (k
,
c)

↓
(,2)

check that y = F(k
,
4) and C' > C (no replaying) 3 cartheentication(t C+ 1

concretely: can interpret if successful
, update c = "

output as 6-digit
number

-A SecurID : stateful token (counter incremented by pressing
button on token)

-> State is cumbersome - need to maintain consistency between client/server

-GoogleAuthenticator : time-based OTP : counter replaced by current time window (e.g .,
30-second window)

If PRF is secure
-> above protocol secure against eavesdroppers (but requires oversecretsaroblematic : RSA breached

~
"under composition" in 2011 and SecurID tokens compromised↳struction G

:

No server-sideSecrets(Slyne-way and used to compromise defense

- Secret key is random input X and counter n ; Contractor Lockheed Martin

Verification key is H
*

"(x)
prdr podr- pude pode
↓ ↓ ↓ ↓ Poverty ycheck HEvkYattader has to inta

in order to authenticate
--.-

X H(x)H(2)(x)((-2)(x)H(n- (x)H((x) = vk

- Verification key can be public (credential is preimage
of vK)

↳ Can support bounded number of authentications (at most u) - need to update key aftera logins
-

-> Output needs to be large (280 bits or 128 bits) since password is the put/output to the hash function
-

Naively ,
client has to evaluate H

many times
per authentication (vO(n) times)

↳ Can reduce to Ollogn) hash evaluations in an amortized sense by storing Ollogn) entries along the hash chain

no man-in-the-middle
Thus far

, only considered passive adversaries
,

but in reality,
adversaries can bedicious - I

protection

-

Adversary can impersonate server (e.g ., phishing) and then try to authenticate as client (but cannot interact with client during auth
.)

- All protocols thus far are valuerable all consist of client sending token that server checks
,

which can be extracted byI I
active adversary

- For active security, we usehallenge-response

Signature-based challenge -

response
-

Server stores a verification key vK for digital signature scheme

-

Client holds signing key sk

client (sk) dommessag ne
a

check that Verify (vk,
m

,
o) = 1

Server asks client to sign a random message
↳ Client's signature indicates proof of possession of sk associated with vK

-> Active adversary that interacts with the client before interacting with the prover cannot forge signatures
Provides active security but signatures are long (v384 bits)

Signature-based challenge response : client "demonstrates knowledge" of signing key
--

we will generalize this to "proving" abitrary statements

