
Focus thus for in the course : protecting communicationLe.g, message confidentiality and
message integrity)

Remainder of course : protecting computations

&knowledge : a defining idea at the heart of theoretical cryptography
with surprising implications

↳ Idea will seem very counter-intuitive
,

but surprisingly powerful
-(DSA/ECDSA signatures based on IK !)

↳ Showcases the importance and power of definitions (e.g,
"What does it mean to know something ?")

We begin by introducing the notion of a "proof system"
- Goal : A prover

wants to convince a verifier that some statement is true
-

e.g.,
"This Sudoku puzzle has a unique

solution"
these are all examples of

"The number N is a product of two prime numbers p and a
" & statements

"I know the discrete log of h base g
"

We model this as follows : ~
the verifier is assumed to be an efficient algorithm

W

prover
(x) ⑫fer(X) X : statement that the

prover is trying to
prove (known to both

= prover
and verifier)- We will write d to denote the set of the

T : the proof of X
statements (called a language")

-

↳
be 90 , 13 -

given statement X and proof it
,

verifier decides whether to accept or reject
Properties we care about:

=Completeness : Honest prover
should be able to convince honest verifier of true statements

Ext2 : Pr [i = P(x) : V(x
,
i) = 1) = 1 I Could relax requirement to allow for]

&undress : Dishonest
prover

cannot convince honest verifier of false statement some error

* x @2 : Pr[T = P(x) : V(X
, i) = 1) = neg1((x1)

& negligible in the statement length

Typically, proofs are "one-shot" (i . e
., single message from prover to verifier) and the verifier's decision algorithm isdeterministic

↳ Languages with these types of proof systems precisely coincide with NP (proof of statement X is to send NP witness w)

Recall that NP is the class of languages where there is a deterministic solution-checker :

& ENPE) E efficiently - computable relation Pr s .
t

.

XEL E Ev + 90 ,131 : R(X
,w) = 1

Y 4 ↑ ↑
Statement language witness NP relation

Proofsystem for NP :

↑over (x)
Verifier (x)
-

w
-

accept it Ro(X ,
w) = 1

Perfect completeness + soundness



Going beyond NP : we augment the model as follows

- Add randomness : the verifier can be a randomized algorithm ! allows proving statements that are beyond NP
- Add interaction : verifier can ask "questions" to the prover

Interactiveproof systems [Goldwasser - Micali-Rackoff) :

↓
efficient and

randomized
prover (x) verifier (*)

-

->

TL
- ↳ be 50, 13

Interactive proof should satisfy completeness + soundness (as defined earlier)

Consider following example: Suppose prover
wants to convince verifier that N =

pq where p,g are prime land secret).

prover
(N

, p , g) Verifier (N)

-(p-8)
accept if N = pg

and reject otherwise

Proof is certainly complete and sound
,

but now verifier alo learned the factorization of N
... (may not be desirable if

prover was trying
to convince verifier that N is a proper RSA modulus (for a cryptographic scheme) withrealing factorization in the process

-> In some sense
,

this proof conveys information to the verifier[i.e
.,

verifier learns something it did not know before seeing
the proof]

Zknowledge : ensure that verifier does not learn anything lother than the fact that the statement is true)

#Howdo we define "zero-knowledge" ? We will introduce a notion of a "untor
.

"

for a language 2

Refinition.
An interactive proof system <P

, V) " is zero-knowledge if for all efficient (and possibly malicious) verifiers V *, there

exists an efficient simulator S such that for all XEL :

View v* ((P,
v)(x)) = S(X)
-

random variable denoting the set of messages
sent and received by V* When interacting with the prover P on input X



What does this definition mean?

View (PV
* (X)) : this is what V*

sees in the interactive proof protocol with 4

S(X) : this is a function that only depends on the Statement X
,

which V* already has

If these two distributions are indistinguishable, then anything that V* could have learned by talking to P
,

it could have learned

just by invoking the simulator itself
,

and the simulator output only depends on X
,

which V *

already knows

↳ In other words
, anything V* could have learnedli.e

., computed) after interacting with P
,

it could have learned without

ever talking to P !

Very remarkable definition !

~ can in fact be constructed from OWFs

Moreremarkable : Using cryptographic commitments
,

then every language LEIP has a zero-knowledge proof system.
↳ Namely, anything that can be proved can be proved in zero-knowledge !

We will show this theorem for NP languages. Here it suffices to construct a single zero-knowledge proof system for an

NP-complete language. We will consider the language of graph 3-colorability.

·a
-

colorable
not 3-colorale

&coloring : given a graph G
,

can you color the vertices so that no adjacent nodes have the same color?

~cryptographic analog of a sealed "envelope" (see HWH)

We will need a commitment scheme. A (non-interactive) commitment scheme consists of three algorithms (Setup ,
Commit

, Open) :

·

Setup -> 0 : Outputs a common reference string(used to generate/validate commitments) o

- Commit (o
,
m)-t(C

,i) : Takes the CRS O and message m and outputs a commitment cand
opening it

·

Verify (5
,

m
,
<

, it) +0/1 : Checks if c is a valid commitment to m /given it)

Typicalsetup :

Committer Vatier
o Setup

o
m

(C,i)= Commit (o,m

Isometime latera

->
can check that Verity (0,

m
,
C,) = 1


