
CS 346: Cryptography Fall 2025

Homework 2: Symmetric Cryptography

Due: October 2, 2025 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/fa25/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: A Parallel CBC [15 points]. A disadvantage of randomized CBC mode is that CBC encryption
is inherently sequential. However, CBC decryption is parallelizable. Suppose we interchanged CBC
encryption and decryption. Specifically, let (EncryptCBC,DecryptCBC) be CBC encryption constructed from
a secure PRP F : K× {0,1}n → {0,1}n . Define (Encrypt′,Decrypt′) as follows:

• Encrypt′(k,m): Sample a random IV
R←− {0,1}n and output DecryptCBC(k, (IV,m)).

• Decrypt′(k, (IV,c)): Output EncryptCBC(k, (IV,c)). Note here that we are running EncryptCBC with the
provided IV (i.e., EncryptCBC is not sampling a random IV).

Prove formally that (Encrypt′,Decrypt′) is not CPA-secure. You should describe an efficient adversary
and compute its advantage. When constructing a CPA adversary, every encryption query (m0,m1) the
adversary makes to the CPA challenger must be on equal-length messages (i.e., |m0| = |m1| in each query).
Note: It is also possible to give a 1-query attack so this scheme is not even semantically secure. However,
for this problem, feel free to consider the CPA-security game.

Problem 2: CBC Padding Oracle Attack [14 points]. Recall that when using a block cipher in CBC
mode, the message length must be a multiple of the block size. Thus, CBC requires padding to support
encryption of arbitrary-length messages. In the TLS protocol (used for securing traffic on the web), if v
bytes of padding are needed, then v bytes with value (v −1) are appended to the message. As a concrete
example, if 1 byte of padding is needed, a single byte with value 0 is appended to the message before
applying CBC encryption. In TLS, the record layer is secured using an approach called “MAC-then-
Encrypt1” (which as we will soon see, is not the ideal combination). At decryption time, the ciphertext
is first decrypted (and the padding verified) before checking the MAC. In older versions of OpenSSL, the
library reports whether a decryption failure was due to a “bad pad” or due to a “MAC verification failure.”
One might think that it was beneficial to provide an informative error message on decryption failure. As
you will show in this problem, this turns out to be a disaster for security.

1In MAC-then-encrypt, the encryption algorithm first computes a MAC t on the message m, and the ciphertext is the encryption
of the message-tag pair (m, t).

https://www.cs.utexas.edu/~dwu4/courses/fa25/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/fa22/info.html

Suppose an adversary has intercepted a ciphertext ct encrypted using AES-CBC and moreover, suppose
the adversary can submit ciphertexts to a CBC decryption oracle and learn whether the padding was valid
or not. The decryption oracle outputs a single bit indicating whether the decrypted plaintext contains
a valid pad. Your goal in this problem is to develop an efficient algorithm that allows the adversary to
decrypt ct by making a small number of queries to the padding oracle.

We have provided starter code that contains an implementation of AES-CBC encryption using the Python
cryptography library. Your task is to write an algorithm that takes as input a ciphertext encrypted using
AES-CBC (with randomized IV) and outputs the associated message given access to the above decryption
oracle. The decryption oracle takes as input a ciphertext and outputs True if the decrypted plaintext has a
valid pad (as defined above), and False if not.

Your task is to implement the decrypt method in cbc.py. You cannot change the interface for decrypt;
otherwise, you are free to implement the algorithm however you prefer (using standard Python libraries,
including the Python cryptography library). Your code will be evaluated only for correctness. Some
helper functions are provided in util.py. Your attack must satisfy the following requirements:

• Your algorithm should support decrypting messages of arbitrary non-zero length. The message
you return should not include any padding (you can use the strip_padding method in util.py to
remove the padding).

• The input ciphertexts can be encryptions of arbitrary byte sequences (i.e., they are not necessarily
ASCII-encoded strings).

• Your algorithm is allowed to make at most 8192 queries to the padding oracle for each non-IV block
of the ciphertext. Note that this is an upper bound and many algorithms will require significantly
fewer queries.

• Hint: Start by showing how to test whether the last byte of mi is some value t by making 2 queries
to the decryption oracle.

The following is the output of running base.py on our reference implementation (34 lines of code):

$ python3 base.py
Plaintext: b'CS 346'
Decrypted output: b'CS 346'
Successful decryption? True
Number of padding oracle queries: 1608

Submission instructions: Upload your code (consisting of only cbc.py) to Gradescope under Home-
work 2A. Note that your implementation must work with our provided main.py and util.py. Your
submission will be autograded, and upon submission, your code will be run on a simple test case. There
is no written component for this question.

Remark: Are there settings where the server would repeatedly decrypt ciphertexts of the user’s choosing?
It turns out that when using IMAP (the protocol email clients use to fetch email) over TLS, the IMAP client
will repeatedly send the user’s password to the IMAP server to authenticate. With the above padding

https://www.cs.utexas.edu/~dwu4/courses/fa25/static/cbc.zip
https://cryptography.io/en/latest/

oracle (implemented using a “timing channel”), an adversary can recover the client’s password in less
than an hour! This problem shows that if a decryption failure occurs, the library should provide minimal
information on the cause of the error. This type of “padding oracle” attack was the basis of the “Lucky 13”
attack on TLS 1.0 (2013)—many years after they were first discovered (2002) and thought to be patched!

Problem 3: Cryptographic Combiners [30 points]. Suppose we have two candidate constructionsΠ1,Π2

of a cryptographic primitive, but we are not sure which of them is secure. A cryptographic combiner
provides a way to use Π1 and Π2 to obtain a new construction Π such that Π is secure if at least one of
Π1,Π2 is secure (without needing to know which ofΠ1 orΠ2 is secure). Combiners can be used to “hedge
our bets” in the sense that a future compromise of one ofΠ1 orΠ2 would not compromise the security of
Π. In this problem, we will study candidate combiners for different cryptographic primitives.

(a) Let F1,F2 : K×{0,1}n → {0,1}n be efficient functions. Consider the function F ((k1,k2), x) := F1(k1, x)⊕
F2(k2, x). Prove or disprove: if at least one of F1 or F2 is a secure PRF, then F is a secure PRF.

(b) Let H1, H2 : {0,1}∗ → {0,1}λ be arbitrary collision-resistant hash function candidates. Define the
function H(x) := H1(x)∥H2(x). Prove or disprove: if at least one of H1 or H2 is collision-resistant,
then H is collision-resistant.

(c) Let (Sign1,Verify1) and (Sign2,Verify2) be arbitrary MAC candidates2. Define (Sign,Verify) as follows:

• Sign((k1,k2),m): Output (t1, t2) where t1 ← Sign1(k1,m) and t2 ← Sign2(k2,m).

• Verify((k1,k2),m, (t1, t2)): Output 1 if Verify1(k1,m, t1) = 1 =Verify2(k2,m, t2) and 0 otherwise.

Prove or disprove: if at least one of (Sign1,Verify1) or (Sign2,Verify2) is a secure MAC, then (Sign,Verify)
is a secure MAC.

Problem 4: Time Spent [1 point]. How long did you spend on this problem set? This is for calibration
purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

2Namely, you can assume that they are correct (but could be arbitrarily broken).

https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf

