Instructor: David Wu (dwu4@cs.utexas.edu)
TA: El: Bradley
Objects think and of accordance only is security assumption that the second of the second
Overarching goal of cryptography: securing communication over untrusted networks
Alice > Bob
third party should not be able to
1) causadrop of communication (confidentiality)
2) tamper with the communication (integrity)
Today: secure communication on web (https://)
TLS protocol (transport layer security)
two components: handshake (key exchange)
record layer (confidentiality + integrity)
quotecting data at rest: disk encryption
Most of this course: study mechanics for protecting confidentiality + data
Most of this course: study mechanics for protecting confidentiality + data - Encryption schemes for confidentiality
- Signature schemes for message integrity
They exchange for setting up shared secrets
End of this course: protecting communication => protecting computation
Two users want to learn a joint function of their private inputs
training models on private (hidden) data
comparing two DNA sequences privately
Lo private auction to destermine winner without revealing bids
by private voting mechanisms (can identify winner of election without revealing individual votes)
- We can show the following remorkable theorem:
"Anything that can be computed with a trusted party can be computed without!"
Logistics and administration: - course in primarily a theory course - we will assume familiarity with reductions Logistics and administration: And mathematical proofs!
9
- Course website: https://www.cs.utexas.edu/~dwul/courses/fa25
- See Ed Discussion for announcements, notes will be posted to course website (1-2 days after lecture)
THOMEwork submission via Gradescope (enroll via Coaves) Toke of there is programming assignment (Python)
- Course consists of 5 homework assignments (worth 60 %) and two in-class exams (worth 40 %)
- Five late days for the semester: use in 24-hour increments, max 72 hours (3 late days) for any single assignment
This semester: Lectures will be recorded using Lectures Online
Please participate virtually if you are feeling unwell

```
A brief history of cryptography:
    Original good was to protect communication (in times of war)
Basic idea: Alice and Bob have a shared key k
        Alice computes C \leftarrow Encr.pt(k, m)

ciphertext key message (plaintext)
       Bob computes m < Decrypt (k, c) to recover the message
   This tuple (Encrypt, Decrypt) is called a cipher
                                                K, M, C are sets (e.g., K= M= C= {0,1328})
Definition. A cipher is defined over (K, M, C) where K is a key-space, M is a message space and C is
             a ciphertext space, and consists of two aborithms (Encrypt, Decrypt):
                       Encrypt: K×M→C } functions should be "efficiently-computable"

Decrypt: K×C→M } theory: runs in probabilistic polynomial time [algorithm can be randomized]
                                                        practice: fast on an actual computer (e.g., < 10 ms on my laptop)
            Correctness: Ykek, Ymem:
                               Decrypt (k, Encrypt (k, m)) = m
                        "decrypting a ciphertext recovers the original message"
Early ciphers: "shift by 3"
         AHD
                         Not a cipher! There is no key!

Anyone can decrypt!

Algorithm to encrypt is assumed to be public.

NEVER RELY ON SECURITY BY OBSCURITY! - Harder to change system than a key
           BH> E
            C F> F
           A \leftrightarrow X
            4 -> B
                                                                                            - Less scrutiny for secret algorithms
            2 P> C
   - Caesar cipher +t: "shift by k" (k=13: ROT-13)
              Still totally broken since there are only 26 possible keys (simply via broke force guessing)
   - Substitution cipher: the key defines a permutation of the alphabet (i.e., substitution)
           A \mapsto C
B \mapsto X
ABC \mapsto CXJ
C \mapsto J
      Z \mapsto T — substitution table is the key How many keys? For English alphabet, 26! \approx 2^{88} possible keys
                                                                     very large value, cannot brate force the key
```

```
Still broken by frequency analysis

- e is the most frequent character (12%)

- q is the least frequent character (~0.10%)
           Can also look at digram, frigram frequencles
    - Vigener aprec (late 1500s) - "polyalphabetic substitution" key is short phrase (used to determine substitution table):
                    k = CAT
              Encrypt (k, m): HELLO
+ CATCA < repeat the key
                                 ↑ KFEOP
                                 Linterpret letters as number between 1 and 26
                                       addition is modulo 26
                  if we know the key length, can break using frequency analysis otherwise, can try all possible key lengths l=1,2,...
                       L> general assumption: keys will be much shorter than the message latherwise if we have a
                                                      good mechanism to deliver long keys securely, then can use that mechanism
                                                     to share messages directly
    Fancier substitution ciphers: Enigma (based on rutor machines)
             but .. still breakable by frequency analysis
Today: encryption done using computers, lots of different ciphers

- AES (advanced encryption standard:, 2000) "block cipher"

"stream cipher"
```