
How long does the output of a CRHE have to be ?

Birthdayattack on CRHFs
· Suppose we have a hash function H : 90

,
1" + 20 , 13? How might we find a collision in 4 (without

knowing anything more about H)

Approach1 : Compute H(1)
,

H(2),
. . . ,

H(29 + 1) ~size of hash output space
->

By Pigeonhole Principle, there must be at least one collision -

runs in time O(It)

Approach2 : Sample mi 10,13" and compute H(mi)
. Repeat until collision is found.

How many samples needed to find a collision?

Theorem(Birthday Paradox)
. Take

any
set S where ISI =

u
. Suppose r

. . . .

.,
reES . Then

,

- ((
Pr[zitj := rj) = 1 - e 2n

conditioned on U
,, ..., vi-I being distinct

I of. Pr[itj : = = rj] = 1 - Pr[Vitj : ri + rj] - 7L

= 1- Pr[gr . 3) . Pr[V & Gr,

r
,3] - PrTreeGree , ..., r3]

= I-
dominant term when

= I-()
- automatically holds for X* - ~ |xk1
W

2) Ie since 1 +xe for all x(e*
= 1 + x ++ ..

men

=- =_ positive for all x> o

= 1-e-
number ofpeople inao e

birthdayL

When 121
. 25m

,
PrEcollision] = PrEEitj : : = rj] >E. [For birthdays ,

1025555 = 23]

↳ Birthdays not uniformly distributed ,
but this only mreases collision probability .

ETry proving this !]

For hash functions with range 90,13? we can use a birthday attack to find collisions in time dat = 28 can even do it with

↳ For 128-bit security (e.g .,
210)

, we need the output to be 256-bits (hence SLA-236)
↳ Quantum collision-finding can be done in 293 Clube root attack)

, though requires more space IstartSpSeeding

~ or even better
,
a large-domain PRE

W

Back to building a secure MAC from a CRHF-can we do it more Infectly than using CRHF + small-domain MAC ?

↳ Main difficulty seems to be that CRHFs are less but MACs are keyed
Eda: include the key as part of the hashed input

By itself
,

collision-resistance does not provide any "randomness" guarantees on the output
↳> For instance ,

ifIt is collision-resistant
,

then H(m) = Moll - 1/mol/H(m) is also collision-resistant even though H' also

Leaks the first 10 bits/blocks of m

-> Constructing a PRF/MAC from a hush function will require more than just collision resistance

&tion 1 : Model hash function as an "ideal hash function" that behaves like a fixedtrulyrandom function

smodelingturistic called the random oracle model - will encounter later in this course

&tion 2 : Start with a concrete construction of a CRHF (e.g., Merkle-Damgard or the sponge construction)
and reason about its properties

↳ We will take this approach

Suppose H is a Merkle-Damgard hash function built from aeure compression function

Several
ways to build a keyed function :

1 . Prepend key : F(k
,

m) : = H (k 11m)

↳ Insecure due to structure of Merkle-Damgard : can mount an "extension attack."
given H(k//m)

,
can compute

H(k//m//m') by extending Merkle-Dangard chain

2. Append key : F(k
, m) : = H(m 11 k)

-> Similar to hash-then-MAC construction and vulnerable to same offline attack : adversary finds a collision in the

Merkle-Damgard prefix and uses that to construct a forgery -> for SHA-1
, they used PDF files

↳ Structure exploited in SHA-1 collision demonstration (can generate arbitrary collisions once prefix matches)
3. Envelope method : F(k

, m) : = H(k //m/lk) 3 for reasonable pseudorandomness assumptions on h (e.g.,
both

4 Two-key nest : F((k1
,

k2) , m) : = H(k2 //H(k , 11 m) ↑ (k
,m) : = h(k

, m) and Fz(k
,
m) : = h(m , k) is a PRF)

,
both

of these constructions are secure PRFs on a variable-size domain
hash-based MAC

~
HMAC is a PRF/MAC based on the two-key rest (though with correlated keys) :

HMAC(k
,

m) : = H(k ,
11 H(k2

,
m))

where k
,
5kipad and K2* k* opad

and iPad and opad are fixed strings (specified in the HMAC standard)

y &
0x36 repeated Ox5C repeated

Security : Since K
,

and ke are correlated
,

need to make stronger assumption on security (e.g .,
h remains pseudorandom under a relatedak)

#stantiations : Typically ,
denoted HMAC-H where H is the hash function

e.
g.,

HMAC-SHA1

HMAC-SHA256 -
one of the most widely-used MAC on the web (used in SSL/TLS,

IPsec
, SSH , and more)

#MACfor key-derivation : Recall that under reasonable assumptions ,
HMAC is a secure PRF

In
many protocols, we need to derive multiple keys from a single master keyle.g,

derived from a password)
↳ To derive multiple independent cryptographic keys, a PRF is a natural primitive :

Kenc =HMAC(kmaster
,

"enc" (YPRF security says derived keys are computationally indistinguishable from

kmacHMAC (kmaster
,

"mac") uniform
N

I y ↑
tag (just has to be uniquederived keys master key

This approach is used in TLS and IPsec to derive session keys durin session setup
↳ General paradigm is the "expand" step in hash-based key-derivation (HKDF-RFC 5869)

↳ Consists of two procedures :

-

Extract : derive a master key from
entropy-

source (e.g, a user password)
-

Expand: derive sub-keys from the master

key
Both steps rely on HMAC

