
Another approach to construct MACs : domain extension for PRES I small-domain PRF - large-domain PRE]

Approach 1 : use CBC (without IV)

#
output

~ v

Not encrypting messages so no need for IV (or intermediate blocks)
↳ Mode often called "raw-CBC"

Raw-CBC is a way to build a large-domain PRF from a small-domain one

↳ Can show security for "prefix-free" I Imessages moreprecionly, rawcis aprefixfrez:pseudorandomaslongtheEincludes fixed-length
messages as a special case

But not secure for variable- length messages
: "Extension attack"

1 . Query for MAC on arbitrary block X :

j #- F(kx) = t

2. Output forgery on message (X ,
X # t) and tag + - => t is a valid tag on extended Amessage (x

, tox)

↳ Adversary succeed with advantage 1

raw CBC can be used to build a MAC on fixed-length messages,
but not variable- length messages

(more generally , prefix-free)
(ECBC)

For variable- length messages,
we use

17

encrypted CBC" : standards for banking/financial services

-
-> variant used in ANSIX9.9

,
ANSIX19.9 standards /Criticalforsecurita

key not secure)
L

& apply another PRF with a different key to the output of rawCBC

~#output !
To use encrypted CBC-MAC

, we need to assume message length is even multiple of block size (similar to CBC encryption)
↳ to sign messages that are not a multiple of the block size

,
we need to first ead the message

->
as was the case with encryption , padding must be injective
↳ in the case of encryption , injectivity needed for correctness

↳ in the case of integrity, injectivity needed for ecurity [if pad(mo) = pad (m,) ,
mo and m, will have the same

Standard approach to pad : append 1000 ... 0 to fill
up block [ANSIX9. 9 and ANSI X9. 19 standards)

~ Note : if message is an even multiple of the block length ,
need to introduce a dummy block

-> Necessary for
any injective function : 190, 13541 > 150 ,13"

-

This isapadding scheme [PKCS#7 that we discuss previously in the context of CBC
encryption

isabyte-padding scheme)

Encrypted CBC-MAC drawbacks : always need at least 2 PRF evaluations (using different keys) 3 especially bad for authenticating
messages must be padded to block size short (e.g., single-byte) messages

Better approach : raw CBC-MAC secure for prefix-free messages
↳ Can we apply a "prefix-free" encoding to the message?

-
equal-length messages cannot have one be prefix of other

-Option1 : Prepend the message length to the message " different-length messages differ in first block

Problematic if we do not know message length at the beginning (e.g.,
in a streaming setting)

Still requires padding message to multiple of block size)
-

Option2 : Apply a random secret shift to the last block of the
message

(x
,

Xz, . .

., Xe) + (X ,, xz
,

. .

.,
x10k) where kX

Adversary that does not know In cannot construct two messages that are prefixes except with1 probability "IX) (by guessing k)

basis for CMAL (standardized by WIST in 2005)

A parallelizable MAC /PMAC) -

general idea :

-
derived as E(k, 01)

-

so key is just k,
V

It ... Let P (k,) are important - otherwise
, adversary can

↓ ↓
P(k, 1)-> &ermute the blocks⑦

↑
P(k,2)=#P(k,3-4P(ke) ↳ "mask" term is of the form Vick where

multiplication is done over GF(24) where n is#l the block size (constants Vi carefully chosen for

efficient evaluation(

·/> tag

Can use similar ideas as CMAC Crandomized prefix-free encoding) to support messages that is not constant multiple of block size

Parallel structure of PMAC makes it easily updateable lassuming F is a PRP)
↳

suppose we change block i from m[i) to m'[i) : PMAC is "incremental" :

compute F (k
,,tag)[i] t P(kil)@mciPls can make local updates

old value without full recomputation

In terms of performance :

-

On sequential machine
, PMAL comparable to ECBC, NMAC,

CMAC 3 Best MAC we've seen so far
,

but not used...

- On parallel machine, PMAC much better &eason : patents : (not patented anymore
!]

-Summary : Many techniques to build a large-domain PRF from a small-domain one (domain extension for PRF)
↳) Each method (ECBC

,
CMAC

, PMAC) gives a MAC on variable- length messages
->

Many of these designs (or their variants) are standardized
-

How do we combine confidentiality and integrity ?
↳ Systems with both guarantees are calledauthenticatedencryption schemes - gold standard for symmetric encryption

Tonatural options" :

1. Encrypt-then MAC (TLS 1 .2+, IPsec) ↑

guaranteed to be secure if we instantiate using CPA-secure encryption
2 . MAC-then-encrypt (SSL3.0/TLS 1. 0

,
802.

11 :) 2
and a secure MAC

as we will see
, not always secure

Definition. An encryption scheme TIE : (Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:

- CPA security I confidentiality]
-

ciphertext integrity [integrity]
adversary

change
output 1 If C4 59 ,

C.... 3/
special symbol + to demote invalid ciphertext

and Decrypt (k, c) # 1

Define CIAdv[A
,
IsE] to be the probability that output of above experiment is 1. The scheme TISE satisfies

ciphertext integrity it for all efficient adversaries A,

CIAdv[A
,
TIse] = negl.(x)

[

security parameter determines key length

Ciphertext integrity says adversary cannot come up
with a new ciphertext : only ciphertexts it can generate are those that are

alreadyralid. Why do we want this property ? Encrypted under KA
KA

,kLe

Consider the following active attack scenario : F mail

-

Each user shares a key with a mail server

KA Feed under

-

To send mail, user encrypts contents and send to mail server Alice

- Mail server decrypts the email
, re-encrypts it under recipient's key and delivers email

Eve intercepts and kB

modifies message
Encrypted under KA

If Eve is able to tamper with the encrypted message, Fak kE

↓then she is able to learn the encrypted contents (even if mail

the scheme is CPA-secure) scree-> More broadly ,
an adversary can tamper and inject ciphertexts

KA
Alice Bob

into a system and observe the user's behavior to learn information

about the decrypted values- against active attackers, we need tyer notion of security

