
Definition . An encryption scheme TIE (Encrypt, Decrypt) is secure against chosen-ciphertext attacks (CCA-secure) if for all efficient

adversaries A
,
CCAAdvIA

,
ITSE] = negl. where we define CLAAdvTA, TISE] as follows :

bE90,13

adversary challenges !-

I
M
I

be 50,13 -
adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertexts it received from the

CCAAdrIA ,
TIse] = /Pr[b' = 1/ b = 0] - Pr[b = 11b = 1])

challenger (otherwise, adversary can trivially break security (

↳> called an "admissibility" criterion

CCA-security captures above attack scenario where adversary can tamper with ciphertexts
↳ Rules out possibility of transforming encryption of XIIz to encryption of yllz
↳ Necessary for security against active adversaries [CPA-security is for security againstessive adversaries]
-> We will see an example of a real CCA attack in HW1

-more anencryptionschemesprovideauthenticatedencryption
, thenits Asurphertext integrity , the challenger's represent

to the adversary's decryption query will be 1 with all but negligible probability. This means we can implement the

decryption oracle with the "output 1" function. But then this is equivalent to the CPA-security game.

[Formalize using a hybrid argument] simple counter-example : concatenate unused bits to end of ciphertext
in a CCA-secure scheme (stripped away during↓ decryption)

Note: Converse of the above is not true since CCA-security # ciphertext integrity.
↳ However

, CCA-security + plaintext integrity-
> authenticated encryption

#ke-away : Authenticated encryption captures meaningful confidentiality + integrity properties ; provides active security

&Encrypt-then-MAC : Let (Encrypt, Verify) be a CPA-secure encryption scheme and (Sign, Verify) be a secure MAC. We define

Encrypt-then-MAC to be the following scheme :

Encrypt'((kE, km) , m) : c = Encrypt (kE, m)
↑ X

independent keys
t - Sign (km,

c)

output (c, t)

Decrypt" ((kE, km) , (c+)) : if Verify (km, c , +) = 0, output
else

, output Decrypt (kE , c)



Itheorem .
If (Encrypt, Decrypt) is CPA-secure and (Sign, Verify) is a secure MAC

, then (Encrypt , Verify') is an authenticated

encryption scheme
.

#roof.
(Sketch)

. CPA-security follows by CPA-security of (Encrypt, Decrypt). Specifically, the MAC is computed on ciphertexts and not

the
messages . MAC key is independent of encryption key so cannot compromise CPA-security.

Ciphertext integrity follows directly from MAC security (i .e ., any valid ciphertext must contain a new tag on some

ciphertext that was not given to the adversary by the challenger ?

Emportantnotes : - Encryption + MAC keys must beindependent. Above proof required this (in the formal reduction
,
need to be able to

simulate ciphertexts/MACs-only possible if reduction can choose its own key).
↳ Can also give explicit constructions that areompletelybroken if same key is used (i.e., both properties fail to

hold)
↳ In general , never rese cryptographic keys in different schemes ; instead, sample fresh, independent keys !

-

MAC needs to be computed over the entire ciphertext
↑ means first

-

Early version of ISO 19772 for AE did not MAC IV (CBC used for CPA-secure encryption) block (i.e., "Leader")
·

RNCryptor in Apple :OS (for data encryption) also problematic (HMAC not applied to encryption IV) 1 is malleable

AC-then-Encrypt : Let (Encrypt, Verify) be a CPA-secure encryption scheme and (Sign, Verify) be a secure MAC. We define

MAC-then- Encrypt to be the following scheme :

Encrypt' ((kE, km) , m) : - Sign (km,
m)

c - Encrypt (KE , (m,t))

output a

Decrypt" ((kE, km) , (c ,+)) : compute (mit)
= Decrypt (KE, c)

if Verify (km ,
m
,
t) = 1

, output m ,
else

, output I

Not generally secure ! SSL 3 .0 (precursor to TLS) used randomized CBC + secure MAC

->
Simple CCA attack on scheme (by exploiting padding in CBC encryption)

[POODLE attack on SSL 3.0 can decrypt all encrypted traffic using a CCA attack]

Padding is a common source of problems with MAC-then-Encrypt systems[see HW] for an example]

In the past, libraries provided separate encryption + MAC interfaces
-

common source of errors

-> Good library design for crypto should minimize ways
for users to make errors

, not provide more flexibility

Today , there are standard block cipher modes of operation that provide -authenticatedencryption
- One of the most widely used is GCM (Galois counter model - standardized by NIST in 2007

&M mode : follows encrypt-then-MAC paradigm
-

CPA-secure encryption is nonce-based counter mode Most commonly used in conjuction with AES

- MAC is a Carter -Wegman MAC
& CAES-GCM provides authenticated encryption)

↳ "encrypted one-time MAC"



-CMencryption : encrypt message with AES in counter mode ~
Galois Hash -key derived from PRE

v L
evaluation at oh

compute Carter-Wegman MAC on resulting message using GHASH as the underlying hash function

and the block cipher as underlying PRE ↑ GHASH operates on blocks of 128-bits

operations can be expressed as operations over

Typically , use ESGCM for authenticated encryption Galified with
2 esa

Oftentimes
, only part of the payload needs to be hidden

,
but still needs to beauthenticated

↳ e.g., sending packets over a network : desire confidentiality for packet body, but only integrity for packet headers(otherwise
,
cannot route !)

AEAD : authenticated encryption with associated data

↳
augment encryption scheme with additional plaintext input ; resulting ciphertext ensures integrity for associated data

,
but not confidentiality

Iwill not define formally here but follows straightforwardly from AE definitions)
↳
can construct directly via "encrypt-then-MAC" : namely, encrypt payload and MAC the ciphertext + associated data

↳ AES-GCM is an AEAD scheme


