
Thus far
, we have assumed that parties have a shared key.

Where does the shared key come from?

Can we do this using the tools we have developed so far ?

So far in this course :

↑
CPA-secure encryption

PREs
Y

MAC

=> authenticated encryption Key agreement :

Alice Bob
->

Can we use PREs to construct secure key-agreement I - Requirements :

i
-> 1)k ,

= kz = k

protocols? - with high
in I probability

2

2) Eaves dropper
cannot learn

k (efficiently)

#erklepuzzles : Suppose f : X -> Y is a function that is hand to invert

&"One-way function")
Alice Bob -> for example ,

a secure PRC
-

X , , . . ., Xn = X 6 : 90, 134 + 20 , 13" is
one-way

~f(xi)En = f(x))
if [n]

find Xi such that f(xi) =

y ; [solve the "puzzle"]
S EncryptAE (k, m) derive a key k from Xi & we assume that the
-

↓
-

derived from Xi solution is unique

try each key ki to

decrypt ciphertext

Suppose it takes time + to solve a puzzle . Adversary needs time Olut) to solve all puzzles and identify key
.

Honest parties
work in time O(n+).

↳
Only provides Linearap between honest parties and adversary

Can we get a super-polynomial gap just using
PRGs ? Very difficult ! [Impagliazzo- Rudich]

Can we get a super-linear gap just using
PRGs? Very difficult ! [Barak-Mahmoody)

result holds even if start with a

- one-way permutation2

Impaglizzzo-Rudich : Proving the existence of key-agreement that makes black-box use of PRG implies 4 NP.

We will turn to algebral number theory for new sources of hardness to build key agreement protocols.

Definition.

A
group consists of a set G together with an operation

* that satisfies the following properties
:

- Closure : If g. .927 D
,

then g,g,-

-Associativity : For all 91 , 92, 93 t0 , g.
* (gz* gz) = (g ,

* gz) * 93
-

Identity : There exists an element eEG such that exg =

g
=

g
* e for all ge 6

-

Inverse : For
every element gEO ,

there exists an element g"tD such that
g

* g" = e =g *

g
In addition

,
we say a group is commutative (or abelia) if the following property also holds :

-Commutative : For all gi , gz
ED

, g,
* g2

=

gz*g)

-
called "multiplicative" notation

#otation : Typically ,
we will use

"o" to demote the
group operation (unless explicitly specified otherwise)

.
We will write

gX to

denote gigg
(the usual exponential notation)

.

We use "I to denote the miplicative identity

Examplesof
groups

: (TR
,
+) : real numbers under addition

(K, +) : integers under addition

([p , +) : integers modulop under addition [sometimes written as <7/pI]
~ here

, p
is Prime

Thestructure of Can important group
for cryptography) :

* = EXXp : there exists y t &
p

where Xy
= 1 (mod p))

& the set of elements with multiplicative inverses modulo
p

What are the elements in Ip*?
greatest common

↑ divisor

&

Bezout's identity : For all positive integers X
,Y &I

,
there exists integers a

,
bEX such that ax + by = gad (x, y).

Corollary : For prime p,
+ 31

,
2, p

- 13.

Proof. Take
any X [1

,
2

, ..., y-13. By Bezout's identity , gad (X
,p) = 1 so there exists integers a

,
bEC where 1 = ax + bp.

Modulo
p ,

this is ax = 1 (modp) so a = x
+ (modp).

Coefficients G
,
b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm :

=nclidean algorithm : algorithm for computing gcd(a,
b) for positive integers ad a

relies on fact that gcd (a , b) = gcd (b
,

a (mod b) :

to see this : take any
a Lb

->
we can write a = big + + where g : 1 is the quotient and

O <r < b is the remainder

↳> d divides a and b) & divides b and r

↳ gcd(a ,b) = gcd(b , r) = gcd(b ,
a (modb)

gives an explicit algorithm for computing ged : repeatedly divide :

gcd (60
,
27) : 60 = 27(2) + 6 [g = 2

,
r = 6) u ged (60

,
27) = gcd (27

,
6)

- -2

27 = 6(4) + 3 (g = 4
,

r = 3) m gcd(27,6) = gcd(6, 3)
- -L

6 = 3(2) + 0 [g = 2
,

r = 0] m gcd(6 ,3) = gcd (3
, 0) = 3

"rewind" to recover coefficients in Bezout's identity :

60 = 27(2) + 6
extended S 2 - ~

6 = 60 - 27(2)7~

Euclidean 27 = 6(4) + 3 -> 3 = 27- 6 : 4 27 - (60-27(2))4
-algorithm 6 I 3(2) + 0 = 27(9) + 60(- 4)

4 -
coefficients

#terationsneeded : Olloya) - i .e., bitlength of the input (worst case inputs : Fibonacci numbers]

#mplication : Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)

