Thus	far, we h	ove Ossum	ed that	parties)	rave a	Shared	key.	Where	does	the	Shared	Key	come	from?				_
Can	we do th	is using ar in this	the tools	we have	x develo	ped:	so fo	x ?										
	So 1	ar in this	course:															
			700	A-secure	encrypten													
		F	RF3	A-secure AC		⇒ a	uttentic	ated encr	ph'on	Ken	ogree	ment						
			2 M	P C						- 1		Alice			Bob	۵		
	Can	we use	, PRFs	to co	astruct	Secrim	e ko	./ - D.O.10 81	ment				=		→		ements:	
	J	outocals?	,,,,,	10 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	,,,	1 J.					Ì.	•	→	1) k	.= k ₂ =	- k
) I DOCESIA								_		1			1		with his proba	sh Joisty
												k,			k ₂		aves guo	
																	cannot	leary
		_															kı (effici	(Pipos
Merkl	<u>e puzzles</u>	: Suppose	. ქ :χ-	» y is i	~ tunc	tion t	hact	ַ איייאן	t to	יישיבי	x+	,	1				-	+
	•								(" one	5-0004	fun	arion)					
		Al	ice	~		<u>B0</u> 1	<u>b</u>		L	-> for	- exom	iple,	0 1	secure	PRG)		
		х.,	Χ ←	Λ							G : !	(מ, ו ל	y —	secure solo,	3, 3	<i>□</i> /∕€	,-way	
				y,=f(٣١)	,, yn	= f(xn)												
							e [n)										
						f:	d xi	such the	+ f(7	x;)=4;	[{	solve	the "	puzzle"]			
				EncryptA	E (k, m)		deriv	e a key	k fr	om Ki				'ځ ه	و مهرب	سو_ ا	theet	the
		1.		Encrypt A oberived to	from 2	c.		l						S	olutron	. īs	m/dr	و
		try 6	each her k	to													ı	
		, · · /		المديد														
		6.60	xypt cipher	iex7														
c	., 1	L . 15	. .		1	Λ.			1	۵()\		,	11 -	1	, , ,	7.,	1.	
Suppo	be it to	kes time	τ.	some a	puzzle.	Howe	rsory	Neds	TIME	O(NE)	15 8	olve	OUI P	uzzies	my you	untity	kuy.	
Hones	t porties	, work i	a time	(N+E)														
	L																	+
	' Onl	y provide	s linear	gap	between	honest	part	ies and	. actre	ceory							-	+
							• •					١.	_					
Can	we get	a super	-polynomia	ر معرو الم	just usin	g PRI	es ;							pagliazzo-				
Can	we get o	a super-	-linear	gap j	ust usin	ን ምቢ	.Gs?			Very	, diffic	ult!	Bur	k-Mah	moody]			
				0.0	0												ith a	
												. resu		ls even	DN	z - way	, permu	etatio.
Impagl	iazzo-Rud	ich: Provin	n the exic	itence of l	Ley-agreen	ent thou	t make	s <u>black</u> -	box us	e of	PRG	implie	s P	≠ NP.			'	
()			9									,						
																		\top
																		\top
																		+

```
We will turn to algebra | number theory for new sources of hardness to build key agreement protocols.
Definition. A group consists of a set G together with an operation * that satisfies the following properties:
   - Closure: If g,g, € G, then g, *g, € G
   - Associativity: For all g_1, g_2, g_3 \in G, g_1 * (g_2 * g_3) = (g_1 * g_2) * g_3
   Tolentity: There exists an element e E G such that e * g = g * e for all g E G
   Triverse: For every element g & C, there exists an element g' & G such that g*g' = e = g' *g
In addition, we say a group is commutative (or abelian) if the following property also holds:
   - Commutative: For all g, g2 & B, g, * g2 = g2 * g,
                                                                              _ called "multiplicative" notation
Notation: Typically, we will use "" to denote the group operation (unless explicitly specified otherwise). We will write
          gx to denote g.g.g. g (the usual exponential notation). We use "1" to denote the multiplicative identity x times
Examples of groups: (TR, +): real numbers under addition
                     (\mathbb{Z}, +): integers under addition
                     (\mathbb{Z}_p, +): integers modulo p under addition [sometimes written as \mathbb{Z}/p\mathbb{Z}]
                      here, p is prime
The structure of \mathbb{Z}_p^* (an important group for cryptography):
    \mathbb{Z}_p^* = \{ x \in \mathbb{Z}_p : \text{ there exists } y \in \mathbb{Z}_p \text{ ohere } xy = 1 \pmod{p} \}
     The set of elements with multiplicative inverses modulo p
```

coefficients

Bezout's identity: For all positive integers $X, y \in \mathbb{Z}$, there exists integers $a, b \in \mathbb{Z}$ such that ax + by = acd(x, y).

Corollary: For prime p, $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}.$

Proof. Take any $\chi \in \{1,2,...,p-1\}$. By Bezout's identity, $\gcd(x,p)=1$ so there exists integers $a,b\in\mathbb{Z}$ where 1=ax+bp. Modulo p, this is ax=1 (mod p) so $a=x^{-1}$ (mod p).

Coefficients a, b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm:

Euclidean algorithm: algorithm for computing gld (a, b) for positive integers a>b:

relies on fact that god (a, b) = god (b, a (mod b):

to see this: take any a > b

L> we can write $\alpha = b \cdot g + r$ where g > 1 is the quotient and $0 \le r \le b$ is the remainder

 \Rightarrow d divides a and b \iff d divides b and \cap \Rightarrow gcd(a,b) = acd(b, \cap) = acd(b, a (mod b))

gives an explicit algorithm for computing god: repeatedly divide:

gcd (60, 27): 60 = 27(2) + 6 [q = 2, r = 6] ~ 9 gcd (60, 27) = gcd (27, 6) 27 = 6(4) + 3 [q = 4, r = 3] ~ 9 gcd (27,6) = gcd (6,3) 6 = 3(2) + 0 [q = 2, r = 0] ~ 7 gcd (6,3) = gcd (3,0) = 3

"rewind" to recover coefficients in Besout's identity:

extended $\begin{cases} 60 = 27(2) + 6 \\ 27 = 6(4) + 3 \end{cases} \Rightarrow 3 = 27 - 6 \cdot 4$ = 27(2) + 6 = 3(2) + 0 = 27(9) + 60(-4)

Iterations readed: O(loga) - i.e., bit-length of the input [worst case inputs: Fibonacci numbers]

Implication: Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)