
-cyclic groups are commutative ~
defined to be the identity element

L 101-13 .&efinition. A
group D is eic if there exists a generator o

such that D = Ego , g, ..., 9
&efinition. For an element ge , we write (g) = /gog,..,gi) to demote the set generated by g (which need not be the

entire set. The Cardinality of (g) is the order of g
(i .e.,

the size of the "subgroup"generatedbord(y
= 1Example. Consider **: [1

,
2

,
3
,
4

,
5

,
63

.

In this care,

(2) = [1 ,
2

, 43 12 is not a generator of #
*) ord(2) = 3

(3) = 91 , 3
.
2

,
6

,
4

,
53 (3 is a generator of #*] ord (3) : C

-Lagrange'sTheoremForgroup, andanyelementY , ord(g)(Id (the order of
g

is a divisoro

-Corollary (Fermat's Theorem) : For all x&p ,

XP" = 1 (modp)
Pot .

I** 1 = 191 ,
2, . . ., p

-13) =

p
- 1 ↓ for integer I

By Lagrange's Theorem, ord(X)/p-1 so we can write p-l
= koord(X) and so XP" = (xord(x))" = 1" = 1 (modp)

#mplication : Suppose X and we want to compute ** E T
*

for some large integer y 4
↳ We can compute this as

x
Y

= yy(modp
- 1)

(modp)
since XP" = / (mod p)

↳ Specifically ,
the exponents operate modulo the order of the group

↳
Equivalently :

group (g) generated by g is isomorphic to the group (*g ,+) where g = ord (g)

(g) = (4g , +)
x - X
g

Notation : g denotes timeg
g

*
denotes (gX)"[inverse of group element gY)

g
*

denotes g(X) where X computed mod ord(g) - need to make sure this inverse exists!

Computingon group elements : In cryptography ,
the groups we typically work with will be large (e.g.,

2230 or 21024 (
-

Size of group element (#bits) : ~log /6) bits (256 bits/2048 bits)

-

Group operations in #p: log p bits per group
element

addition of mod
p elements : Ollogp)

multiplication of mod
p

values : naively Ollogp)
Karatsuba Ollog" p)
Schnhage-Strassen (GMP library) : Ollog ploglog plogloglogy)
best algorithm Ollog ploglog p) [2019]

↳> not yet practical (224096 Leits to be faster ...)

exponentiation :

using repeated squaring
:

g , g2 , g40 ...logp
,

can implement using Ollog
+ a

multiplications [Ollog3p) with naive multiplication]
->

time/space trade-offs with more precomputed values

division (inversion) : typically Ollogp) using Euclidean algorithm (can be improved

Computationalproblems : in the following,
let O be a finite cyclic group generated by g

with ordera
-

Discretelog problem : sample X Ig

given h= gX, compute X

-

CreputationalDiffie-Hellman (CDH) : sample X
, y

= Eg

given gY , gy , compute gXY
-DecisionalDiffie-Hellman (DDH) : sample X

,y ,

r
Eg

distinguish between (g , gY , gy , g
*Y) vs . (g , gY, g5 , g)

Each of these problems translates to a corresponding computational assumption :

↑

-2.g., g = 2

Definition. Let D = (g) be a finite cyclic group
of order g (where g is a function of the security parameter x)

The DDH assumption holds in D if for all efficient adversaries A :

Pr[X
. y

=
Ep : A (g, g+, go , g*) = 1) - PrEX, y , +Exp : Alg , gY, go , g) = 1)) = neg1(x)

The CDH assumption holds in D if for all efficient adversaries A:

Pr[X
, y

= <g : Alg , gY, gy) =

g
*b) = ney((x)

The discrete log assumption holds in G if for all efficient adversaries A :

PrEx=
g

: Alg , gY) = x] = neg)(x)

&stainly : if DDH holds in D => CDH holds in 6 discrete log holds in I

- -
/ ??

there are groups where CDH Major open problem : does this hold?

believed to be hard
, but DDH is

Can we find a group
where discrete log is hard

but CDH is easy ?

easy

Diffie-Hellman key exchange
-

Let O be a group of prime order
p (and generator g) - choice of group , generator,

and order fixed by standard

Alice Bob
-

x4 y =p

compute gYY = (g2)X compute gXY = (gY)]
↳

shared secret :gx
But usually , we want a random distring as the key , no random

group element

-> Element g
*Y has log p bits of entropy , so should be able to obtain a random bitstring with l < logp bits

-> Solution is to use a "randomness extractor"

↳ Information- theoretic constructions based on universal hashing/pairwise-independent hashing
Closes some bits of entropy)

Instantiations : Discrete log in 7 when p is 2048-bits provides approximately 128-bits of security- (ogp)
-

↳ Best attack is General Number Field Sieve (GNFS) -

runs in time 2 time

Much better than brute force - glogp &cube root in exponent not ideal !

↳ Need to choose p carefully if we want to double security,
- Le.g, avoid cases where p-1 is suchhaving small prime factors

need to increase modulus by 8x !

for DDH applications ,
we usually set p

= 2g + 1 where
group operations all

-
Le .g,

16384-bit modulus for 256 bits

g is also a prime (p is a "safe prime") and work in the scale linearly low worse) in of security)
subgroup of order g inP (E has order p-1 = 2g) bitlength of the modulus

Elliptic curve groups
: only require 256-bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time glogp/2 [g-algorithm -

can discuss at end off
* Semester↳ Much faster than using [p : several standards

- NIST P256
,

P384
,

P312 can discuss more at end of semester

-

Dan Bernstein's curves : Curve 25519
3 for in advanced crypto class)

↳

Widely used for key-exchange + signatures on the wel

When describing cryptographic constructions
,

we will work with an abstract group
(easier to work with

, less details to worry about

↳ Use a "random orace" or an "ideal hash function" [teuristic : SHA-256 (g , gY, g8 , gXy)) (bindsThela
Ivery efficient in practice) good practice

: hash all inputs-

-
Arguingsecurity

: 1 . Rely on HashDH assumption
4
(g , gY , gt , Hig, gY, yo, gx3) = (g , gY , gt ,

r)
where H : D-50,13" and -10, 132

2. Model H as ideal hash function H : D
*
- 50 , 13" (i .e

.,
random oracle) and

rely on CDH in D [inability to evaluate H on gy => output is random string]

Instantiations :" Discrete log in T* when p is 2048-bits provides approximately 128-bits of security- (ogp)
-

↳ Best attack is General Number Field Sieve (GNFS) -

runs in time 2 time

Much better than brute force - glogp &cube root in exponent not ideal !

↳ Need to choose p carefully if we want to double security,
- Le.g., avoid cases where p-l is suchhaving small prime factors

need to increase modulus by 8x !

for DDH applications ,
we usually set p

= 2g + 1 where
group operations all

-
Le .g,

16384-bit modulus for 256 bits

g is also a prime (p is a "safe prime") and work in the scale linearly low worse) in of security)
subgroup of order g inP (E has order p-1 = 2g) bitlength of the modulus

Elliptic curve groups
: only require 256-bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time glogp/2 [g-algorithm -

can discuss at end off
* Semester↳ Much faster than using [p : several standards

- NIST P256
,

P384
,

P312 can discuss more at end of semester

-

Dan Bernstein's curves : Curve 25519
3 for in advanced crypto class)

↳

Widely used for key-exchange + signatures on the wel

When describing cryptographic constructions
,

we will work with an abstract group
(easier to work with

, less details to worry about

