
ecurity Phodsinthem
Elbamal is semantically

sea

be 50,13 be 50,
13

adversary Challenger ↓
Adversary getup
,setryptlpk , m m

-

(Co
,
<]

Co, g
-↓ [

be 50,13 ↓
6'E50,13

Claim: these two
games are indistinguishable under DDH adversary's advantage in guessing b

¬
. Suppose there exists efficient A that can distinguish is O here since (Co

,
4)

(o
,
c) - Encrypt(pk , m) from (10

, c)*2 We use is independent of (Mo
,

m .)

A to break DDH : bE 50 ,13

Algorithm B

challengea

#
Observe: X is uniform over 7p so gY is a properly-generated public key (for ElGamal)

if T =

g
*Y

,
then (gt ,

T . m) = (g) , gX8 . m) which is the output of Encrypt(pk,
m) with

randomness y -this is exactly the distribution where A sees Encrypt(pk ,
m)

if T =

g
&

,
then (gE , g

! m) is uniform over
D2 (since

y ,
z are sampled independently of each other and

of m) - this is exactly the distribution where A sees (10
,
3)*

distinguishing advantage of B = distinguishing advantage of A

Equivalentview : Under DDH
, g

*Y looks uniform even given g, gY , g5 ,
so an ElGamal ciphertext looks indistinguishable (to

an efficient adversary) from a OTP encryption

What if we want to encrypt longer messages
? For messages that is not a

group
element]

-

Hybrid encryption (key encapsulation [KEM)) : -
called theyencapsulation

~

Use PKE scheme to encrypt a secret key 3 PKE
. Encrypt(pk ,

k) "Leader" [slow]

Encrypt payload using secret key + authenticated encryption
AE . Encrypt (k , m) "payload" [fast]

- How to derive key from group
element ? secret-key operations much much

Same as in key-exchange : hash the
group

element to a bit-string (symmetric key faster than public-key operations !

e.g..
Hash-ElGamal : Encrypt(pk ,

m) :
y

& Xp

↑
c = (g) , m@H(g ,

h
, gb , ht))

-

as before
, can also rely on ↑

CDH + ideal hash function (randomrace(
H : 6 -> 50 , 13 "

Vanilla ElGamal described above is not CCA-secure !

Ciphertexts are malleable : given ct = (g8,
%
· m)

, can construct ciphertext (gt, mog) which decrypts to message mog
↳ directly implies a CCA attack

Several approaches to get CCA security from DH assumptions :

-

Cramer-Shoup (CCA-security from DDH) - based on hash-proof systems
We do * know of any groups where CDH

believed to be hard
,

but interactive CDH
-

Fujisaki - Okamoto transformation (using an ideal hash function + CDH) ~ is easy. ↑
-> Make stronger assumption (interactive" CDH + use ideal hash function) : <

-

CDH is hard even

-

Setup : X* *
P pl : h

↑ also called strong DH assumption
authenticated given access to

h = gY Sk : X ~
symmetric

encryption scheme
a DDH oracle

"

V

-

Encrypt(pk, m) :
y
=

p k + H(g ,g+,g8,
(3) Ct' = EncaE(k ,

m)

c = (gz ,
ct)

-

Decrypt (sk
,
c) : k = H(g , g&, Co

,
2)

m = Decre (k
,

<
,)

Essentially El Gamal where key derived from hash function

Diffie-Hellman key-exchange is an anonymous key-exchange protocol : neither side knows wo they are talking to

- vulnerable to a "man-in-the-middle" attack

Alice Bob Alice Observe Eve can

of the messages↓
mu Fu & now decrypt all

between Alice and

↓ Bob and Alice +Bob

gxy gay
gXzz gYz2 gYz , g3z, have no idea !

What we require
:Authenticated key-exchange (not ononymous) and relies on a root of trust le

.g, a certificate authority
↳ On the web

,
one of the parties

will authenticate themself by presenting a certificate

To build authenticated key-exchange, we require more ingredients
- namely , an integrity mechanism Te.g., a way to bind a

message to a sender-a "public-key MAC" or digitalsignature]-We will revisit when discussing the TLS protocol
Digital signature scheme : Consists of three algorithms

-

Setup - (vk
,

sk) : Outputs a verification key vk and a signing key sk

·

Sign (sk
, m) + 0 : Takes the signing key sk and a message m and outputs a signature o

-

Verify (vk
, m ,
of> 0/1 : Takes the verification key uk

,
a message m

,
and a signature o

,
and outputs a bit 01

Two requirements :

-

>orrectress : For all messages me M
,

(ok
,
sk) -> Setup,

then

Pr [Verify (vk
,

m
, Sign(sk, m)) = 1] = 1

. Thonestly-generated signatures aways verify)
-

Unforgeability : Very similar to MAC security. For all efficient adversaries A
, SigAdr[A] = PrTw = 1] = negli, where

W is the output of the following experiment :

adversary challenger
-

#
(m*,*)

Let m,
, .

. ., MQ be the signing queries the adversary submits to the challenger Then
,

W = 1 if and only if :

Verify (vk,
m*, o*) = 1 and m

* #Sm,,
. .

.,
mas

Adversary cannot produce a valid signature on a w message.

Exact analog of a MAC (slightly weaker unforgeability :

require adversary to not be able to forge signature on new message)
↳ MAC security required that no forgery is possible on any message Ineeded for authenticated

encryption] digital signature ellipticcurre J Standardswidelyaagalgorithm >
It is possible to build digital signatures from discrete log based assumptions (DSA , ECDSA)
↳ But construction not intuitive until we see zero knowledge proofs
↳ We will first construct from RSA (trapdoor permutations)

