
Defense#1 : Salt passwords before hashing : namely when storing password prod , sample salt 50, 13" and store

(salt
, H(salt1) pwd)) on the server ↑

Note : Sult is apublic value (needed for verification) typically , n?64

Offline dictionary attack no longer effective since every sult value induces different set of hash values

Overall cost of dictionary attack : 0(mn)
- need to re-hash dictionary for every sult

Defense#2 : Use aow hash function [SHA-1 is very fast
- enables fast brute-force search]

- PBKDF2 (password-based key-derivation function) : iterate a cryptographic hash function many
times :

(or berypt) PBKDF2(pod , salt):H) - -- H(salt1lpwd)---() honest user only needs to evaluate

Can use 100
,
000 or - hash function once per authentication;

1,000,000 iterations of SHA-256 adversary evaluates many times

Frawback : custom hardware can evaluate SHA-256 my fast
-

scrypt (more recent : Argonzi) : slow hash function that needs lots of
memory(space) to evaluate

↳ custom hardware do not provide substantial savings (limiting factor is space , not compute
Can also use a led hash function (e.g., HMAC with key stored in HSM)

↳
ensures adversary who does not know key cannot brute forceall !

Bestpractice : Always salt passwords
Always use a slow hash function (e.g., PBKDF2, scrypt) or keyed hash function or both !

raw MD5 hash - not secure! Facebook password onion

&salted,keyedtieemote service) ↓
(circa 2014)

layers gradually added over time to

slow hash function achieve better security
and probably to void password)(

rehashing

Password-based protocol not secure against eavesdropping adversary
ladversary sees vi and transcript of multiple interactions between honest prover

+ honest verifier)

One-time passwords (SecurID tokens
, Google authenticator, Duo)

(OTP)

-Construction1 : Consider setting where verification key uk is eret (e.g, server has a secret)
-

Client and server have a shared PRE key K and a counter (initialized to 0) :

client (k
,
c) server (k, c)
11

↓ m (k
,2)

check that y = F(k ,4) and <> < (no replaying) I carleefication(t C+ 1
D

concretely: can interpret if successful
, update c=

output as 6-digit
number

-A SecurID : stateful token (counter incremented by pressing
button on token)

-> State is cumbersome - need to maintain consistency between client/server

-GoogleAuthenticator : time-based OTP : counter replaced by current time window (e.g ., 30-second window)

If PRF is secure
- above protocol secure against eavesdroppers (but requires ever secrets)

↳ can be problematic : RSA breached

-structionG
:

No
server-side secrets Il y ~

"under composition" in 2011 and SecurID tokens compromised
hash function (should be one-way and used to compromise defense

- Secret key is random input X and counter n ; Contractor Lockheed Martin

Verification key is H
*

"(x)
pudr podn-1 pude pode ?

↓ ↓ ↓ ↓
to verify y : check H(y) = vl)] attacker has to invert H

--.-
if successful , update vK = y

in order to authenticate

X H(x)H(2)(x)((-2)(x)H(n- (x)H((x) = vk

- Verification key can be public (credential is preimage
of vK)

↳ Can support bounded number of authentications (at most u) - need to update key aftera logins
-

-> Output needs to be large (280 bits or 128 bits) since password is the put/output to the hash function
-

Naively , client has to evaluate H
many times

per authentication (vO(n) times)

↳ Can reduce to Ollogn) hash evaluations in an amortized sense by storing Ollogn) entries along the hash chain

