
Understanding the definition :

Can we learn the least significant bit of a message given only the ciphertext (assuming a semantically-secure cipher)
No ! Suppose we could .

Then
, adversary can choose two messages mo

,
m

,
that differ in their least significant bit

and distinguish with probability 1
.

This generalizes tomny efficiently - computable property of the two messages.

How does semantic security relate to perfect secrecy
?

#rem . If a cipher satisfies perfect secrecy,
then it is semantically secure

.

Prof. Perfect secrecy means that Vmo
,
m,

EM
,

CeC :

Pr[k = K :

Encrypt (k
, mo) = c) = Pr[kEK :

Encrypt (k , m 1) = <]

Equivalently ,
the distributions

#K:Encrypt(k,mol andK
: Encrypt (K, mis 3

Di

are indentical (DoD.) .

This means that the adversary's output dis identically distributed in the two experiments,
and so

SSAdr[A
,
TIsE] = /Wo-Wil = 0

.

~ encryption key (PRG seed)
seems straightforward,2Eorollary. The one-time pad is semantically secure.

( =- G(s) m but takes some care to pure
- m + G(s)0c -
L L

#orem. LetO be a secure PRG . Then ,
the resulting stream cipher constructed from G is semantically secure.

Prof. Consider the semantic security experiments :

Want to show that adversary's

Experiment Adversary chooses mom andreceives coSo T 3 output in these two experiments are

indistinguishable
Let Wo = Pr[A outputs 1 in Experiment O]

W
.

= PrIA outputs 1 in Experiment 1]

Idea: If G(s) is uniform random string (i
. e

..
one-time pad) ,

then Wo = Wi
.

But G(s) is like a one-time pad!

Define Experiment 0' : Adversary chooses Mo
,

m , and receives Co = - Mo where to So, 13
"

Experiment 11 : Adversary chooses Mo
,

m
,

and receives c = t # M
, where & 30 , 13

"

Define Wo
,

wi accordingly.

First
, observe that Wo = Wi Cone-time pad is perfectly secure).

Now we show that /Wo-Wol = negl and IW.Wil < negl
=> IWo - Wil = 1 Wo - Wo + Wo -Wi + Wi -Wil

-> IWo-Wol + /Wo'-Wil + IWi-Wil by triangle inequality
= negl.

+ negl .

= negl



Typical proof strategy in cryptography:of byIncontrapositive .

Sow. If G is a secure PRG
,

then for all efficient A
,
/Wo-Wil = negl

Common proof technique:

prove thecontrapositive .

-ontrapositive : If A can distinguish Experiments O and O'
,

then G is not a secure PRG.

Suppose there exists efficient A that distinguishes Experiment O from OI

=> We use A to construct efficient adversary B that breaks security of G
.

↳ this step is a reduction
-

Iwe show how adversary live.
, algorithm) for distinguishing Exp.

0 and 0 > adversary for PRG)

Algorithm B (PRG adversary) : be 50, 13

#RGchallenger

-·expects to

t m

-

Running time of B =

running time of A = efficient

Compute PRGAdv[B,
G].

Pr[Boutputs 1 if b = 0] = Wo -if b = 0
,

then A gets G(s)#m which is precisely the behavior in Exp.
O

Pr[B outputs 1 if b = 1) = Wo if b = 1
,

then A gets- Q m which is precisely the behavior in Exp.
O'

=> PRGAdv[B , 6) = /Wo-Wol
,

which is non-negligible by assumption. This proves
the contrapositive.

#mportant note : Security of above schemes shown assuming message space is 10 , 13 (i.e.,
all messages are n-bits long)

Empractice:

Wehavevariable-lengthmessages Inthis case,securityquarantes indistinguishabilityfrom
other mesa

-> can be problematic -

see traffic analysis attacks !

So far
,

we have shown that if we have a PRG
,

then we can encrypt messages efficiently (stream cipher)



Question : Do PRGs exist ?

Unfortunately , we do not know !

n > 1
-

Claim
:

IPRGswithnoutrivialstretchexistthenPAconsider
the following decisionproblem :

on input +E 50 , 13
,

does there exist 590,
13 such that t = G(s)

This problem is in NP (in particular, s is the witness)
.

If G is secure ,
then no polynomial-time algorithm can solve

this problem (if there was a polynomial-time algorithm for this problem ,
then it breaks PRF security with

advantage 1-nx< Since n > X)
.

Thus
, P * NP.

In fact
,

there cannot even be a Mobabilistic polynomial-time algorithm that solves this problem with probability better than

E + 3 for non-negligible 330 . This means that there is no BPP algorithm that breaks PRG security
:

if PRGs exist , then NPABPP
↑

bounded error probabilistic polynomial time

"randomized algorithms that solves problem with bounded (constant) error

"

Thus, proving existence of PRG requires resolving long-standing open questions in complexity theory !
=>

I cryptography : We will assume that certain problems are hard and base constructions of Chopefully small) number of

conjectures.
- Hardness assumptions can be that certain mathematical problems are intractable (e.

g., factoring)
-> typically for public-key cryptography (and half of this course)

- Hardness assumptions can be that certain constructions are secure (e.g.,
"AES is a secure block ciphert

↳

typically for symmetric cryptography
↳

constructions are more ad hoc
, rely on heuristics

,
but very last in practice



Examples of Stream ciphers (PRGs) : designed to be
very

fast (oftentimes with hardware support)
- Linear congruential generator (e.g .,

rand() function in C)

Vi+ 1
= a ri + b (mod m) typical implementation : output is a

- few bits of ro
, " ,

rz
, ...

(full

a
, b ,

m are public constants value of ro
,
r
, rz,. . . . never revealed

To is the initial seed I verysimpleeasytoimplementever of 2)
↳

Or LV/w)

↳ need to choose so outputs have long period
Not a cryptographic PRG : NEVER USE rand() To GENERATE CRYPTOGRAPHIC KEYS ?

-

Given full outputs, outputs fully predictable (if enough bits of state revealed
, can brute force unknown bits)

-

Even given partial outputs (e.g .,
least significant few bits of output) and having secret a

,
b, m

,
can still

be broken (linear functions are not secure ! see Boneh-Shoup Ch
.

3. 7 .
1 and related papers)

- Often good enough for non-cryptographic applications (e.g.,
statistical simulation)

-

Linear feedback shift registers (LFSRs) initial state of LFSR

register state - determined by the seed
V

#1010 10 /1 /1101-> PRG output

~very friendly for hardware implementationsI
I

v

L

Hire
backtaps fixed for the construction

&
linear function of register state (addition modulo 2)

Eachiteration : rightmost bit is output by LFSR

bits at tap positions are xored and shifted in from the left

1 clock cycle = 1 output bit -

very simple and fast !

By itself
,

LFSR is totally broken : after observing m-bits of output ,
the entire state of the LESR is known and

subsequent bits are completely predictable !

Proposal : Use multiple LFSRs and combine in some non-linear way :



Example: CSS (content scrambling system) for DVD encryption [1996]
-> actual CSS encryption has a few differences

,
but

Abitof S
#bit LESR/bits the core attack isunaffected

#y+cont23-> 8 bits

↓
40-bit key C :

carry bit from previous operation (initially 0)

creaded tocomplybitLFSStrictions)hits"

- Brute-force attack :

guess the seed (2240 time)
-

Can do much better with more clever strategy
-> Generalidea: - if we know a few bytes of output of the stream cipher and the output of the

17-bit LFSR
,

can subtract to obtain output of 25-bit LESR

- brute force the seed of the 17-bit LFSR
,

each gress
induces a state for the 25-bit LFSR

- check if output matches or not

-> Attack now runs in -2 time

-

By 1999
, full key-recovery attack on can recover key from DVD in just ~18 seconds on 450MHz processor

Itotally broken !]

-

!
Other examples : GSM encryption (AS/1 , 2 stream ciphers for encrypting GSM cell phone traffic)

↳
xor outputs of 3 LFSRS

↓
Snowden documents : NSA can process encrypted

Pre-2000s ↳ tried to keep cipher design private ,
but eventually reverse engineered and attacks found

A5/1

Never rely on security by obscurity !

Bluetooth EO stream cipher uses a design based on 4 LFSRs in conjuction with a 2-bit finite state

machine - also not secure !
(1987)

-

RC4 stream cipher (widely used - SSL/TLS protocol, 802.11b)

Numerous problems :

#indee
a -

Bias in initial output
: Pr[second byte = 07 :E <

↳ When
using

RC4
,

recommendation is to ignore first 256

- bytes due to potential bias

I-byte per
round

↳ Correlations in output :Probability ofseeing
10, 0 in outa

2562

↳ Given outputs of RC4 with related keys (e.g ., keys sharing
common suffix) , possible to recover keys after seeing
few blocks of output
↳ Can be

very problematic on weak devices (who may not

have good sources of entropy)
-

Modern Stream ciphers /eSTREAM project : 2004 - 2008)
-

Salsa 20 (2005) -) Chalha (2008)

↳ core design maps 256-bit key ,
64-bit nonce

,
64-bit counter onto a 512-bit output

↑ & Design is more complex:

/
allows random access into

- relies on a sequreenables using same
- of rounds

key (and different nonces) the stream
- each round consists

of 32-bit additions
,

Xors
,to encrypt multiple messages and bit-shifts

Iwill discuss later)

↳
very fast even in software (4-14 CPU cycles/output byte) - used to encrypt TLS traffic between Android and Google

services


