
CS 6501: Advanced Topics in Cryptography Spring 2019

Problem Set 2

Due: February 22, 2019 at 5pm (submit via Gradescope) Instructor: David Wu

Instructions: You must typeset your solution in LaTeX using the provided template:

https://www.cs.virginia.edu/dwu4/courses/sp19/static/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
9YD875 to sign up. Note that Gradescope requires that the solution to each problem starts on a new page.

Problem 1: Commitment Schemes [20 points]. In this problem, we will study the notion of a cryp-
tographic commitment scheme At a high level, a commitment scheme enables a user to commit to a
message m in a way that the commitment hides m. Later on, the user can open the commitment and
convince another party that the committed message is indeed m. The commitment scheme is binding
if the user cannot open the commitment to two distinct values. In this problem, we will work with the
following definition:

Definition (Non-Interactive Commitment). A non-interactive commitment scheme with message
space M consists of three algorithms (Setup,Commit,Verify) with the following properties:

• Setup(1λ) → pp: On input the security parameter λ, the setup algorithm outputs public param-
eters pp.

• Commit(pp,m) → (c,r): On input the public parameters pp, a message m ∈M, the commit
algorithm outputs a commitment c and an opening r .

• Verify(pp,m,c,r) → b: On input the public parameters pp, a message m ∈M, a commitment c ,
and an opening r , the verification algorithm outputs a bit b ∈ {0,1}.

The commitment scheme should satisfy the following properties:

• Correctness: For all messages m ∈M,

Pr[pp← Setup(1λ); (c,r) ←Commit(pp,m) :Verify(pp,m,c,r) = 1] = 1.

• Perfect Hiding: For all messages m0,m1 ∈M,{
pp← Setup(1λ); (c,r) ←Commit(pp,m0) : c

}
≡

{
pp← Setup(1λ); (c,r) ←Commit(pp,m1) : c

}
• Computational Binding: For all efficient adversaries A, if we sample pp ← Setup(1λ) and

(c,m0,r0,m1,r1) ←A(1λ,pp),

Pr
[
m0 6= m1 and Verify(pp,m0,c,r0) = 1 =Verify(pp,m1,c,r1)

]= negl(λ).

https://www.cs.virginia.edu/dwu4/courses/sp19/static/homework.tex
https://gradescope.com/

Consider the following commitment schemeΠcom = (Setup,Commit,Verify):

• Setup(1λ) → pp: First, sample a group (G, p, g) ←GroupGen(1λ), which outputs the description of a

group G of prime order p and generator g . Then, sample x
R←−Zp , compute h ← g x , and output the

public parameters pp= (G, p, g ,h). The message space for the commitment scheme is Zp .

• Commit(pp,m) → (c,r): Parse pp = (G, p, g ,h). Sample r
R←− Zp and compute c ← g r hm . Output

(c,r).

• Verify(pp,m,c,r) → b. Parse pp= (G, p, g ,h). Output 1 if c = g r hm and 0 otherwise.

Now, show the following:

(a) Show thatΠcom is correct.

(b) Show thatΠcom is perfectly hiding.

(c) Show that under the discrete log assumption with respect to GroupGen, Πcom is computationally
binding.

(d) Show how to extend the above commitment scheme to a vector commitment scheme (Setupn ,Commitn ,
Verifyn) where the message space is M=Zn

p for some n = poly(λ). Your new commitment algorithm
Commitn should have the same structure as the commit algorithm inΠcom. Namely, Commitn(pp,m)
should take as input the public parameters output by Setupn and a vector m ∈ Zn

p , and output a
commitment c ∈ G and opening r ∈ Zp . In your description, you should specify how the Setupn ,
Commitn , andVerifyn algorithms work. Finally, show that your vector commitment scheme is correct,
perfectly hiding, and computationally binding.

(e) Suppose you are given a hash function H : Zp → G (modeled as a random oracle). Show how you
can modify your vector commitment scheme from Part (d) so that the public parameters only
need to consist of the group description (G, p, g) and H (and nothing else). You only need to prove
correctness of your modified scheme. Note that your modified scheme should still be perfectly hiding
and computationally hiding, and a proof of such should exist (even though we are not asking you to
provide it).

Problem 2: Constructing PRFs from DDH in the Random Oracle Model [20 points].

(a) For a PRF F : K×X →Y , and an adversary A, we define two experiments, Experiment 0 and Experi-
ment 1. For b ∈ {0,1}, we define:

Experiment b:
(1) At the start of the experiment, the challenger samples a random key k

R←−K.
(2) The adversary submits a challenge query x∗ ∈X to the challenger.
(3) If b = 0, the challenger replies with y∗ = F (k, x∗). If b = 1, the challenger replies with

y∗ R←−Y .
(4) The adversary can then makes any number of (adaptive) evaluation queries, each consist-

ing of a value x ∈X , where x 6= x∗.
(5) For each evaluation query x 6= x∗, the challenger computes y = F (k, x) and gives y to the

adversary.
(6) At the end of the experiment, A outputs a bit b′ ∈ {0,1}.

For b ∈ {0,1}, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage in the
single-challenge security game as

SC-PRFAdv[A,F] := |Pr[W0]−Pr[W1]|

We say that a F is single-challenge secure if for all efficient efficient adversaries A, the value
SC-PRFAdv[A,F] is negligible.

Show that if F is single-challenge secure, then F is a secure PRF. In particular, show that if there is a
PRF adversary A, then there is a single-challenge PRF adversary B such that

PRFAdv[A,F] ≤Q ·SC-PRFAdv[B,F],

where Q is the number of queries A makes in the PRF security game. [Hint: Try using a similar
structure as that used in the security proof of the Blum-Micali construction from lecture.]

(b) Let G be a group of prime order p, and let H : {0,1}n → G be a hash function that is modeled as a
random oracle. Define a candidate PRF F :Zp × {0,1}n →G as follows:

F (k, x) := H(x)k .

Show that if the decisional Diffie-Hellman (DDH) assumption holds in G and we model H as a
random oracle, then F is single-challenge secure. In particular, show that if there is a single-challenge
PRF adversary A, then there exists a DDH distinguisher B such that

SC-PRFAdv[A,F] ≤QRO ·DDHAdv[B,G],

where QRO is a bound on the number of random oracle queries A makes in the single-challenge PRF
security game. Combined with the result from Part (a), this shows that F is a secure PRF under the
DDH assumption. More precisely, if there exists a PRF adversary A (that makes Q queries and QRO

random oracle queries), then there is a DDH distinguisher B such that

DDHAdv[B,G] ≥ 1

Q
· 1

QRO

·PRFAdv[A,F].

We often refer to the 1/(Q ·QRO) factor as the “security loss” in the reduction. Intuitively, this state-
ment says that the more queries A makes in the PRF security game, the smaller the distinguishing
advantage of the DDH adversary B. We say that such security reductions are non-tight.

(c) Give a tight reduction of the security of F to the DDH assumption in the random oracle model. In
particular, show that if there is a PRF adversary A for F , then there exists a DDH distinguisher B such
that

DDHAdv[B,G] ≥PRFAdv[A,F]−negl(λ).

[Hint: Use the random self-reducibility of DDH.]

Problem 3: Coppersmith Attacks on RSA [15 points]. In this problem, we will explore what are known
as “Coppersmith” attacks on RSA-style cryptosystems. As you will see, these attacks are very powerful and
very general. We will use the following theorem:

Theorem (Coppersmith, Howgrave-Graham, May). Let N be an integer of unknown factorization.
Let p be a divisor of N such that p ≥ Nβ for some constant 0 < β ≤ 1. Let f ∈ ZN [x] be a monic
polynomial of degree δ. Then there is an efficient algorithm that outputs all integers x such that

f (x) = 0 mod p and |x| ≤ Nβ2/δ.

In the statement of the theorem, when we write f ∈ZN [x], we mean that f is a polynomial in an indeter-
minate x with coefficients in ZN . A monic polynomial is one whose leading coefficient is 1.

When N = pq is an RSA modulus (where p, q are identically-distributed primes), the interesting instantia-
tions of the theorem have either β= 1/2 (i.e., we are looking for solutions modulo a prime factor of N) or
β= 1 (i.e., we are looking for small solutions modulo N).

For this problem, let N be an RSA modulus with gcd(φ(N),3) = 1 and let FRSA(m) := m3 (mod N) be the
RSA one-way function.

(a) Let n = dlog2 Ne. Show that you can factor an RSA modulus N = pq if you are given:

• the low-order dn/3e bits of p,

• the high-order dn/3e bits of p, or

• the high-end dn/6e bits of p and the low-end dn/6e bits of p.

(b) In the dark ages of cryptography, people would encrypt messages directly using FRSA. That is, they
would encrypt an arbitrary bitstring m ∈ {0,1}blog2 Nc/5 by

• setting M ← 2`+m for some integer ` to make N /2 ≤ M < N , and

• computing the ciphertext as c ← FRSA(M).

Note that the first step corresponds to padding the message M by prepending it with a binary string
“10000 · · ·000.”

Show that this public-key encryption scheme (known as “textbook RSA”) is very broken. In particular,
give an efficient algorithm that takes as input (N ,c) and outputs m.

(c) To avoid the problem with the padding scheme above, your friend proposes instead encrypting
the short message m ∈ {0,1}blog2 Nc/5 by setting M ← (m‖m‖m‖m‖m) ∈ {0,1}blog2 Nc and outputting
c ← FRSA(M). Show that this “fix” is still broken.

Problem 4: Time Spent [5 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following optional questions to help us design future
problem sets. You do not need to answer these questions. However, we do encourage you to provide us
feedback on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

