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, we have looked at -we-party computation .
What if we have more than two parties?

Many protocols for general
"

multiparty computation ( MPC)
"

- in this course
,

we will focus on MPC based on
"

secret sharing
"

Secretsharing: Suppose we have a secret and want to distribute it
among n parties such that any

t of them can subsequently recover

the secret and
any

( t - t ) subset carnet leg . ,
Board of directors at Coca- Cola want to

protect Coca - Cola recipe ]

Definition
.
A ft

,
n ) - secret sharing scheme over a message space M and share space S consists of two efficient algorithms :

share : m → gn

Reconstruct : St → M

with the following properties :

Correctness : Any t shares can be used to reconstruct me :

✓ m E M : ( si
,

.
- -

, Sn ) ← Share ( m )
✓ S E { s . . . . .

,
Sn ) where Is ) = t : Reconstruct (s ) =

m

Security : Need at least t shares to learn the secret

Fmo
, m ,

E M
,
VI E En] where III at a

.

{ (s . . . . -

,
Sn ) ← Share ( mo ) : si for all i C- I } I { ( s . . . . .

,
Sn ) ← Share (m . ) : Si for all if I }

~

(
can relax to computational indistinguishably (in which case

,

share takes in additional
security parameter)

↳
notion here is

information- theoretic

f any ring will work (p need not be prime)
n

Examples : Additive secret sharing ( n out of n ] : M = Ip ,
S = Ip Provides information - theoretic

- Share ( m ) : Sample r , , . . .

,
rn - ,

I Ip and set rn = m = Iii
'

ri E Ip security - check this !

- Reconstruct ( r . . .
. .

,
rn ) : Output Eiti ri

←
satisfying CPA - security

Combinatorial secret sharing ( t out of n ) : Will use a symmetric encryption scheme over {0113
"

leg .
AES - CTR )

-

Share ( m ) : sample n keys ki . . . .

,
kn for

encryption
scheme

for every t - subset { in . . . ,
it } E Cn )

, encrypt on using kit
.

. . . ,
kit leg

. .

Enc ( ki
, ,

Enc ( Kia
,

' - '

,
Enclkie

,
m ) -

- - D)

Let { 43 be the collection of cipher texts
←

Very large shares !

Output shares (( Kc
, let 's) ,

. . .

,
( kn

,
{ Ct } ))

µ
relies on computational assumptions

- Reconstruct ( ( k , ,
{ et })

,
. . .
(Kt ,

143)) : by construction
,
there is one Ct C- {Ct } encrypted under k . .

. . .

, Kt ,
so decrypt accordingly



Shamir secret sharing It out of n ] : M -

-

Ftp ,
S =

Ttp
" (require p > n )

Any 2 points↳ beautiful construction based on polynomials (very useful mechanism for sharing data) f (1)

Ketidea : AY d points might define a degree- 'd-" Polynomial over a field

µFnT%ne-

e.g . 2 points define a line
, 3 points define of parabola ,

etc . Boo

g CI)
ft )

-

given d points ,
can efficiently obtain entire polynomial ( Lagrange interpolation ]

#
- share ( m ) : choose y . .

. . .

, ye - I
£

Ttp 1 2 3 4 5

Let f : Ttp →
Ttp be the unique polynomial of degree t - I

f- (o ) -

- m and He ) -

-

yi Vi E Et - I ] Et points uniquely define the polynomial f ]
Output shares ( i

,
Hi ) ) fi c- Cn] Each share is just 2 field elements (independent of threshold t or # parties n )

- Reconstruct (Cii
, y . ) , . . .

,
lit

, ye) ) : Interpolate the unique polynomial f of degree H - t ) defined
by the points (ing .

)
, . . .

,
lie .ge)

Output flo)

A little more detail
. . .

how to construct the polynomial f . Lagrange interpolation .

Let (Xo
, yo ) , . . .

,
Ge

, ye) be a collection of t.tl points .
To find the polynomial f of degree t that interpolates these

points,

we can write

f- (x ) = Aot a , X t - - - tae Xt ,
where ao . . . .

, at
E Ttp

" " " "

it ::÷::::÷÷:÷÷÷ : it:÷H÷:L
"

Vandermonde matrix
"

of

dimension t t 1

Interpolating a polynomial over Ftp just corresponds to solving a linear system over Ftp .
A unique solution exists as long as the

Vanderwoude matrix is invertible .
It turns out that you can show ( via linear algebra) that

a .li :÷:÷÷ it :# iii. ⇒ i÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ :÷÷÷÷÷:
Let us now analyze the properties of Shamir 's secret sharing scheme:

Ceres : Follows by uniqueness of interpolating polynomial ( e.g. , t shares uniquely define a polynomial of degree t - I )

Security : Given any subset of Ct - t) shares ( ii. y . ) ,
. - e

,
( in

, Yi - i )
,
and

any message
ME Ftp ,

there is a ing polynomial f

of degree t - I where

Hii ) -

- y . .
. . .

,
flied -

-

yi - c and f- (o) = m

Thus
, any

th ) shares can be consistent with secret -

sharing of any message m ⇒ information - theoretic
security

Efficiency : Both share - generation and share reconstruction consist of polynomial evaluation and interpolation , both of which are

efficiently computable ( see above)



Shamir secret sharing is a linear secret sharing scheme : namely share - reconstruction is a liar function of the shares

-

Suppose we have shares ( ii. y . ) . . .
lie

, ye) from a t - out - of - n secret sharing of a message rn
.

- Then
,

we can recover polynomial f of degree t - I that interpolates these points by solving the Vanderwoude system

Va =y
⇒ a = V

- '

y
E Ept ( f Cx ) -

- aota , # t - - - taek )

where V is the Wander monde matrix (corresponding to share coefficients ii. . . .

,
it )

,
a is the vector of coefficients of f

,
and y is the

vector of values ly , , . . .

, ye) .

- Given coefficients a
,

notice that m = f- ( o) = Ao = ETA where eT= El , 0,0 ,
- - - so ] is the first standard basis vector

. This

means that we can write

m -

- eia-le.TV - '

ly
Oftentimes

,
we write ETV

- t = ( Xo
,
I
, . . . .

.
It ]

,
in which case

m
-

-

Eee,7igi .

Which is a linear function of the shares of m .

Linear secret sharing is very useful for building threshold cryptosystems .

Here
, we describe one example with threshold BLS signatures :

setup (17 ) : keep uk : (g ,
gk)

Sk : k

sign (sk , m ) : Output o ← Hlm)k

Verify ( uk , m ,
o ) : Output 1 if e ( g ,

o ) = e ( gk , Hlm)) .

Suppose we apply a t - out - of - n secret sharing to the
signing key

k
. Using Shamir secret sharing, this yields shares

(Xi , y . ) , - . . ,
( xn

, yn) .

f-
this is itself a BLS signature , just
with respect to the verification key gti

Each signing party Pi has a share Gigi) .
To sign a message m

,
the party outputs ( Xi , Hlmjti ) .

Suppose one has t shares of a signature on me :

( Xi
. .
Html

" " I , . . . ( xie ,
Hlmjlit )

Shamir secret sharing has a linear reconstruction procedure ,
so given Xii , . .

, Xie ,
we can write the signing key as

k = E' thy =

,
?¥

,
Tigis

where Vx is the Vanderwoude matrix associated with Gi . . . . ,
Xie) and y

= (yi , , - . .

, y ,
-

e) . Importantly , the Lagrange coefficients Tj only depend

on the X - coordinates
.
Thus

, given (Xi
, ,

HCMY" )
, . . .

,
(Xie

,
tkm)

" " )
, one can compute

Cmj
" if = Him .pe?eefjYii=HCmyk

,

which is a BLS signature on the message m under the signing key K .



gates are addition and

multiplication over Ftp

C-omputingonsecret-share-ddatao.hn other paradigm for LPC (and MPC) - better - suited for evaluating arithmetic circuits

Alice that Bob ( xp Alice: chooses raps
,
race Ep and sends !

"

iii.
"

iafahaii
.

share

- v
RBA E Ttp

↳ Observation ? ( XA -

RAB - - r Ac ,
RAB

,
RAC , is additive

④ rae RB

,

secret sharing of
Alice's input XA

[
Bob's share

RBC v we will write Exa ] to denote additive secret sharing of XA
f-(Xa

,
Xp

,

Kc) -

- Xatxptxc Charlie (Xo )

Computing : Given shares of XA and XB
,

[ Xa t XB ] = (XA ) t (XB] (component - wise addition)

Specifically if ( XA ) = ( Xm
, Kaz ,

XA
,
3) where XA.it/A,ztXAis-- XA E Ftp

(KB) = (XB
,
i , XB , e ,

XB
,
3) where XB

, i
t XB.at/B.s=XBET-Tp

then (XA t XB ) = (XA
,
it XB

, I , XA.at/B.z,XA.3tXB.3 ) and Ha, t XB , i) t ( XA , t XB
,
z) t (XA , + XB is ) = XATXB E Ftp

Mally : I . Share addition : Kat XB ] = Exa ) t His]
2

.
Scalar multiplication : ( k XA ) '

- K - HA ]
3

. Addition by constant : kxn.tk ] = (Xa ,
t k

,
XA ,z ,

XA
,

3)

Multiplication of secret - shared values is more challenging .
We will first assume that parties have a

" hint "
- a secret sharing of a

randy multiplication tuple ( idea due to Beaver -

"

Beaver multiplication triples
" ) :

[
each party only has a share of
a , b ,

c : no one knows actual values !

Suppose parties have a secret -

sharing of a random product : Ca]
,
Eb] ,

Ec] where c -

- ab E
Ftp

T J

A , b
I
Ttp ( a ,b are uniformly random values)

Then
, given Ex ) and Cy] ,

we proceed as follows :

l. Each
party computes

Ex - a ] and publishes their share of X - a

2 .
Each

party computes ly - b ) and publishes their share of y
- b

3 . All of the parties compute non - interactively :

Et] = [ of t Ex] (y
- b) t Ey) ( x - a) - (x - a) ly - b)

Claim : Z =

Xy .

Follows by following calculation :

2- = Ct x Cy - b ) t
y (x - a) - K - ally - b)

= abt xy - bftxJ - ay - xftb/xtayfab
=

xy

Observe : Parties only see X - a and
y

- b in this protocol . Since a , b are uniformly random and unknown to the parties ,
X - a and y

- b

is a one-time pad encryption of x and
y

. Resulting protocol provides information
- theoretic privacy for parties

'

inputs.



Assuming we have access to Beaver multiplication triples , we can evaluate
any

arithmetic circuit as follows (
among

n -

parties) :

I . Every party
secret shares their input with

every
other

party

2
. For each addition

gate in the circuit
, parties locally compute on their shares

3 . For each multiplication gate in the circuit
, parties run Beaver 's multiplication protocol

(
using diff triple each time ! )

4 . Every party publishes share of the output ; parties run share reduction to obtain output.

Where do Beaver triples come from?
- Generated by a trusted dealer (say , implemented using secure hardware like Intel SGX )

↳ Notice that these are randomly multiplication triples and input-independent_ ( the dealer does not see any party 's

secret inputs)
-

Using oblivious transfers
. Suppose the field is polynomial size (e.g . p

-
- poly ( x) ) . We can use a 1- out - of -

p
' OT to

generate a multiplication triple .

Senator receiver

[ a ]
, ,
CBI

, ,
KI

.

⇐
Ttp Catz

,
(b)

a

E
Ftp

for i. j E Ftp ,
let

Mig
.

-

- da] ,
ti ) (Cb ]

, tj ) - KI
,
C-

Fp

c-

OT for message (Cah ,
Cbh)

-

By construction
,

receiver 's message is (Ca] , t Cah) (Eb Dt Ebrd) - Cc , ] E Ftp and so Ca]
,
Cb ]

,
Ed is precisely a Beaver

multiplication triple .
Next

,
tout - of - p2 OT can be implemented using 0 (log p)

t - out - of -2 OTS ( via a tree - based construction )
,

but communication grows with 0402) .

↳ Another method is to use Yao 's garbled circuits to generate Beaver triple . Input is Ea]
, ,
Eb ]

, ,
Ed

, and

(a) z ,
[ b)

z ,
and output is 632

.
Communication now grows with polylog Cp) , so this method works even for superpolynomial p .

-

Using somewhat homeomorphic encryption :

sender receiver

[ a ]
, ,
Cb]

,

←
Ttp Enclpk , Cali)

pk.eu#cib
(a) a .

Ebb
, Eh ⇐

Ttp

f
cHtNbEbk ) - E) z)

decrypt to obtain Ed ,

In all these cases , Beaver triples can beg
"

preprocessing
"

phase (before the parties come online and the

inputs to the computation are know) . IMPCwithpreprocessingm.de#
↳ We can similarly preprocess oblivious transfers to reduce its online cost ( see HWY )

.



MP-cpntocolcogiso.rs#KGMW-/Yao * can be improved further !

Type of computation Arithmetic circuits (Fp ) Boolean circuits * Leverages several optimizations

Number of parties Arbitrary ( n ) 2 (half -gates t free Xor )

::÷:÷:*" ÷ :¥:÷:÷÷:¥÷÷s :*
Security Information - theoretic Compute

(with Beaver triples)
' oral

M¥ay : OT is sufficient for n -

party MPC ( with security against all - but - I corrupted parties)
↳ i.e.

, use OT to generate Beaver triples and compute on secret - shared values
"

Anything that can be computed with a trusted party can be computed without
, even if all but a single party is

controlled by an adversary
" [assuming OT ]

Handlingmaliciypates : Protocols described so far are in the semi - honest model (parties agree to follow the protocol as written )
.

Many approaches to support malicious parties :

-

Develop new protocols tailored for malicious
security

-

The GMW approach : take any protocol with security against semi - honest adversaries and have parties

attach a zero - knowledge proof to each message to
prove

that they are

following the protocol specification
↳

Theoretician : Malicious security
is no more difficult to achieve than semi - honest security

↳ Practice : Generic 2K Ps are quite expensive , so oftentimes , other techniques will enable

better efficiency

MPC without cryptographic assumptions ? Information - theoretic MPC is also possible if we assume that there are sufficiently many
honest parties .

-

Hoajty : security against semi - honest adversaries
|

-

Honestsupermajor.at#3honest) :
security against malicious adversaries

→

Advantages : no cryptographic assumptions needed!

oftentimes very efficient since there are no cryptographic operations

Disadvantage : stronger trust assumption (need majority of parties to be honest)
↳

potentially quite reasonable in large-scale protocols (e.g. , blockchain ! Bitcoin make similar assumption on

distribution of computational power
)


