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call the inhomogeneous SIS problem : given AT Ign

'm and u
£ Ign

,
find X E Igm such that Ax -

-

y
and 11×11 E p

It turns out that this can actually be used as a trapdoor function .
Namely

,
there exist efficient algorithms

* Trap Gen ( mm , q , p) → ( A
, tda) : On input the lattice parameters n , m

, q ,
the trapdoor

- generation algorithm outputs a matrix

A E Egan and a trapdoor tda
- ta (x ) →

g : On input X E Igm , computes y
= AXE 28

- FA
" (tda

, y) → X : On input the trapdoor tda and an element y
E Ign ,

the inversion algorithm outputs a value

Hxlkp
Moreover

,
for a suitable choice of n , m , q , p ,

these algorithms satisfy the following properties
:

- For all y E Ign ,
fat

'

(tda , y) outputs x E 2g
"

such that HXH Ep and Ax -

-

y
-

The matrix A output by TrapGen is statistically close to uniform over Iq
" m

Lattice trapdoors have received significant amount of study and we will not have time to study it extensively .
Here

, we will

sketch the high- level idea behind a very useful and versatile trapdoor known as a
"

gadget
' ' trapdoor

First
, we define the

"

gadget
"

matrix ( there are actually many possible gadget matrices - here
, we use a common one sometimes called

the "

powers -
of -

two

"

Iq
"

4 s - - - 2498 '
, z 4 . . . 2497

.

.

, z µ . . . you,
) = ( 124 - - - 2

" " " ) ④ In

Each row of G consists of the powers
of two (up to

211%8 ) )
.

Thus
,
G E Ight

" " % "
.

Oftentimes
,

we will just write

G E Ign
" "

where m > n L log g I .
Note that we can always pad G with all - zero columns to obtain the desired dimension

.

Observation : SIS is easy with respect to G :

G . /?g ) = O E Ign ⇒ norm of this vector is 2

n

Inhomogeneous SIS is also easy with respect to G : take any target vector y
C- Iq .

Let yi, Lloyd , . . .

, yi , ,
be the binary decomposition of

yi (the ith component of y) .
Then

,

Yu
.

÷ .
"

E'
'
signs. Y '

i

i = I

of :÷:÷=÷÷H= .
yn

'

; j -

- i

Y n , I

I

Ymllogqt

← Observe that this is a 0/1 vector (binary valued vector )
, so

the Los - norm is exactly I

n m

We will denote this
"
bit -

decomposition
"

operation by the function G "
: Iq → 10,13

[
important : G - t

is not a matrix ( even though G is ) !



Then
,
for all

y
C- Ign ,

G. G-
'

(y) =

y and HG" (g) 11=1 .
Thus

,
both SIS and inhomogeneous SIS are easy with respect to

the matrix G
.

We now have a matrix with a public trapdoor .

To construct a secret trapdoor function (useful for cryptographic applications) , we will

" hide" the gadget matrix in the matrix A
, and the trapdoor will be a

" short " matrix fine
, matrix with small entries ) that recovers the

gadget .

nxk kxm
More precisely , a gadget trapdoor for a matrix At 2g is a short matrix RE 2g such that

A - R = G E 2pm
We say that R is

"

short
"

if all values are small
. ( we will write HRH to refer to the largest value in R ]

.

Suppose we know R E Zqmtm such that AR = G .
We can then define the inversion algorithm as follows :

- fi
'

( tda -

- R
, y

C- Ign ) : Output x = R . G-
' ( y) . importantnet : when using trapdoor functions in a setting where the

adversary can see trapdoor evaluations , we actually need to
We check two properties : randomize the computation of fat .

/ . Ax = AR - G-
'

(g) = G. G-' Cy) =

y so X is indeed a valid pre
-image otherwise

, we lead the trapdoor .

2
.
11×11 = HR . G-' ly) H S m .HR/lllG-4ylH = m . HRH But this basic scheme illustrates

Thus , if HRH is small
,
then HXH is also small ( think of p as a large polynomial in n )

.

the main ideas - - -

Remaining : How do we generate A together with a trapdoor ( and so that A is statistically close to uniform)?

Many techniques to do so ; we will look at one approach using the LHL :

Sample TAE 2g
" "

and EE { o , 13mm
.

Set A = [ A 1 A pit G) E zqn×2m

Output A E 2qn×2m , tda = R = (TI ) E 2g2m×m

First
,
we have by construction that AR = - AR t AR t G = G

,
and moreover HRH = 1

.
It suffices to argue that A is

statistically close to uniform (without the trapdoor R) . This boils down to showing that TA pi t G is statistically close to uniform given

F-
.
We appeal to the LHL:

l
. From the

previous lecture ,
the function FA (x ) = Ax is pairwise independent.

2- Thus , by the LHL
, if M Z 3 nlogq ,

then Ar is statistically close to uniform in Ign when r
er { 0,13?

3
. Claim now follows by a hybrid argument (applied to each column of R )

.

Thus
, given TA

,
the matrix TAR is still statistically close to uniform

. Corresponding , A is statistically close to uniform
.

Digital signatures from lattice trapdoors : We can use lattice trapdoors to obtain a digital signature scheme in the random oracle model

(this is essentially an analog of RSA signatures) :
-

Key Gen ( 17 ) : (A , tda) ← Trap Gen (n , m , q , p) ( lattice parameters mm , qp are based on security parameter X ]

Output vk -
- A and Sk -

- tda
-

Sign (sk , m ) : Output o ← th
' (tda

,
Hcm))

.

Here
,
H :{ 0,13*-2 Iq

"

is modeled as a random oracle .

-

Verify (vk ,
m

,
o ) : check that doll Ep and that fa ( o ) -

- H ( m)
.

Hardness reduces to hardness of inhomogeneous SIS (similar proof as RSA - FDH) .
Sketch :

l
. Replace A with a uniformly random matrix ( as required by inhomogeneous SIS ) - follows

by property
of Trap Gen

2
.
Given inhomogeneous SIS challenge (A

, y) , set
public key

to A and H (mt ) -

-

y where m* is the message the adversary

forges on (guess this at beginning)



3
.
To simulate signing queries on a message m ( without knowledge of trapdoor) ,

first sample X ← Ds and sets Hlm) = Ax

- Here Ds corresponds to the distribution of vectors output by the
preimage

- sampling algorithm th
'

( this is typically

a discrete Gaussian distribution with standard deviation s , where s is chosen so that AX is statistically close to

uniform over L. (A) ]
- Thus

, by programming
the random oracle

,
we can sign arbitrary messages with knowledge of the trapdoor for A

Summarysofer : - The SIS problem can be used to realize
many symmetric primitives such as OWFS

,
CRHFS

,
and signatures

- Useful trick :

"

concealing
"

a trapdoor (e.g. , short matrix / basis) within a random -

looking one
-

common theme in

lattice - based cryptography .

For public-key primitives , we will rely on a very similar assumption : learning with errors ( LW E)
,
which can also be viewed as a

"

dual
"

of

SIS
.

We introuce the assumption below : errors are typically much

smaller than 8)
LearningwithErrorsCLWE.LI The LWE problem is defined with respect to lattice parameters mm , q , X ,

where X is an erudition

over Iq (oftentimes, this is a discrete Gaussian distribution over Ig ) . The LWEn.mg , assumption States

nxm m

that for a random choice A Ekg ,
SE Ign

,
e ← X

,
the following two distributions are computationally

indistinguishable :

( A. STATE ) E ( A
,
r )

where rt 2g?

In words
,
the LWE assumption says that noisy linear combinations of a secret vector over Eq

" looks indistinguishable from random .

A few notes / observations on LWE :

-

Typically , m is sufficiently large so that the LWE secret s is uniquely determined .

- Without the error terms
,
this problem is easy for m > n :

simply use Gaussian elimination to solve for S

- Observe that if SIS is
easy ,

then LWE is easy. Namely ,
if the adversary can find a short u C- Egm such that Au = 0

,

then
,

the adversary can compute

GTA te 'T u
= STA utetu = Eu ⇒ Metall s m - Hell - Hull

E. this is small (compared to q)

r Tu will be uniform over Iq ,
are unlikely to be small

- We can also choose the LWE secret from the error distribution ( so it is short) -

can be useful for both efficiency and for

functionality (this is at least as hard as LWE with secrets drawn from any distribution , including the uniform one )
- Can also consider search us . decision versions of the problem ( ie .

,
search LWE

says given
(A

,
STA t et )

,
find s ) .

There are

search - to - decision reductions for LWE
.

LWE#atticepmben : The search version of LWE essentially asks one to find s given state ? This can be viewed as

solving the
"

bounded - distance decoding
"

(BDD) problem on the q
-

any
lattice

£ (AT ) = { se 2g
"

: Ats ) t
q Z

"

ice
, given a point that is close to a lattice element SEL (AT )

,
find the

point
S



so ly Cn)

Cononsta¥ss : Regev showed that for any m
-

- poly
Cn) and modulus q

< 2
"

and for a discrete Gaussian

noise distribution (with values bounded by p) , solving LWEn.mg, x is as hard as quantum soloing GapSVPG

on arbitrary n - dimensional lattices with approximation factor V
= 8 ( n . 81ps)

↳
Long sequence

of subsequent works have shown classical reductions to worst-case lattice
problems (for suitable instantiations of the

parameters
)

Symmetric encryption from LWE (for binary - valued messages)

Setup ( 14 : Sample SE 25 .

Elon
Encrypt ( s , put : sample at Ign and e ← X . Output ( a

,
stat et p

. # t )
.

o

✓ A

ground
to 0

Decrypt (s , et ) : output Letz - stet
,? Visually:

-
-

-¥
operation

"
LXI

,

= {
° if - ft f x < of

"

rounding 4
I otherwise

[
take X E 2g to be representative between -21 and Ez

round to 1

8-
2

O

Coreas : ctz - stet
,

= state t p
- LII - Sta p

=p . LII te

if let < ¥
,
then decryption, recovers the correct bit

14
- " ' ' '

-¥
on
← B•[ "

encoding
"

of message 1Security : By the LWE assumption ,
la ,

state ) E ( a
,
r ) &

2

where r
E Iq .

Thus ,

( a , state ) E ( a ,
r ) = La

,
rt LII ) E Ca

,
stat et (Tt )

- - in

encryption of 0 since r is uniform

(

¥ over Ig /
encryption of z

LWE

Obese : this
encryption

scheme is additively homeomorphic ( over Zz ) :

Cai
,
state ,

t pi
- LED

,
⇒ ( a , taz ,

ST (a. taz ) t ( e. tea ) t Ipe , tph) - L # t )
( az

,
start ez t

pea
- 1931

decryption then
computes

( pumped . L# I t e , tea

which when rounded yields phitphz (mod 2) provided that Kit ez t 1/2 94

Using the results from HW3
,

we can obtain a public
-

key encryption
scheme if we can

" refresh
"

the ciphertext

idea : We will rely on the LHL
.

We will include
encryptions

of O in the public key and refresh ciphertext by taking a subset sum of

encryptions
of O :

setup ) : A E Zqntm output pk
= ( A ,

bi )
T

s et Ign b ← STA t et sk = s

e ← xn

enpqygg.sn { E⇒¥µ , sample
r±% : " be viewed as m encryptions of

° under the " matric scheme with secret keys

scheme output ( Ar
, btrtpu.LI ) )

Decrypt ) : output Lotz - stet , 72

Correctness : ch - Ect
,

= btr t p
-

Lotz ) - STAR = starter tf . LEI - STAR

=p
. Lotz ) ter

if letrl < IT
,
then decryption succeeds ( since e is small and r is binary , er is not large : let r I < Mlk111141 = m Hell )



Security : Follows by LWE and LHL :

Hybo : Real public key ? LWE

Hybi : Uniformly random public key leg .
b E Igm ) 2 LHL :( A

,
Ar) E (F

,
u)

Hyba : Uniformly random ciphertext (e.g. , Ct = ( u
,
t ) where u

E Igm and t E Eod)) where I = (Az) E
2g

" "

?
"

r ← Eo , DM
,
and u

er 90,13

Encrypting multiple bits :
May seem wasteful to use a vector to encrypt a single bit

.

We can consider a simple variant of

Regev encryption where we reuse A to
encrypt multiple bits :

nxmSetup ) :
sample A tag pk : ( A ,

BT )

stag 't BT e- 5A t ET E 2g
" "

sk : S

E er xmxl(
l secret Kees concatenated together

Encrypted : sample r E lo , Bn

output ( Ar
,
Btr + µ

. LET)

Decrypted :
output Lotz - 5kHz

Correctness : As before : ctz - Ict
,

= Btr tpe
- LEI - STAR = ETR t pi

. LII

Security : As before :
by LWE

,
( A

,
STAT ET ) E ( A

,
R ) where AE2gn×m ,

Ser ZIA ,
E e- Xml

,
RE age

'm

← in particular , apply a hybrid argument and argue for each row of S ( and corresponding row of STA t ET )


