
CS 6501 Week 3 : Number - Theoretic Cryptography-

⇐inte : we have mechanisms for
message confidentiality

and integrity ,
but all rely on parties having a

shared key

Question : Where do symmetric keys come from ?

We will begin with a few concepts from algebra that will be useful :

Definition
.
A
group

consists of a set G together with an operation
* that satisfies the following properties

:

- Closer : If g , ,g£ Gl
,
then g.

* ga E IG
-

Associativity : For all g. , ga , g , E G
, g,

* C gigs )
= Cg ,

* ga) * gs
-

Identity : There exists an element e E G such that e *
g

-
-

g
-

-

g
* e for all g

C- 6

-

Inverse : For
every element g E 6 ,

there exists an element g-
'
E 6 such that g

*
g-

'
= e -

- g-
' *
g

In addition
,

we say
a group is commutative ( or abelian ) if the following property also holds :

- Commutative : For all go , ga
C- G

, g ,
* ga

= gig ,

f-
called "

multiplicative
"

notation

Notation : Typically ,
we will use

"

.

"

to denote the
group operation (unless explicitly specified otherwise )

.
We will write

y
" to denote g

.

g
.

g
- - -

g ( the usual exponential notation)
.

We use
"

I
"

to denote the multipartite .

-

X times

¥ample¥ps : (TR
,
t ) : real numbers under addition

( I
,
t ) : integers under addition

( Ip ,
t ) : integers modulo p under addition ( sometimes written as 2/p2)

f here
, p is prime

7*5-2,5 ( an important group
for cryptography ) :

Zp* = { x E Ip : there exists y E Ep where Xy
= I (mod P)

)
a
, b can be computed efficiently

I the set of elements with multiplicative inverses modulo p using Euclid's algorithm

-

Be¥tty : For all positive integers x. y
C- 2

,
there exists integers a

,
b E 2 such that ax t by

-

- god ( x , y) .

Corollary : For prime p , Ipt = I 1,2 ,
. - -

, p
- I }

.

¥ . Take
any X C- { 1,2 , . . .

, p
- 13

. By Beaut 's identity , god ( x , p)
= I so there exists integers a ,

b C- 2 where I = ax t bp .

Modulo
p ,

this is ax = I (mod p) so a = x
- i ( mod p) .

[
defined to be the identity element

f- cyclic groups are commutative

Definition
.

A
group 6 is cyclic if there exists a get g

such that Gl = {go , g
'

,
. . .

, g
" " }

.

Definition .
For an element GE G , we write (g) = { go , g

'

, . . .

, g
' " " } to denote the set generated by g Iwhich need not be the

entire set . The cardinality of Lg) is the order of g lie ,
the size of the

"

subgroup
"
generated by g)

Examine.
Consider IF = f 1,2 , 3,4 ,

5,63
.

In this case
,

↳ means that good = I

( 27 = { 1,2 ,
4 } ( 2 is not a generator of 25 ) cord (2) =3

(3) = { 1,3 , 2,6 ,
4
, 53 ( 3 is a generator of ZF ] ord ( 3) = 6

tagmeme . For a group
6

,
and

any
element

g
E G

,
cord (g) I 161 I the order of

g
is a divisor of 161)

.

↳ For 2p* ,
this means that ordlg) I p

- I for all g
C- G



Thediscretelog-prob.es .

Let 6 be a group and take elements g. h E Gl
.

The discrete log problem in Gl is to compute

X E Zord (6) such that h=gX .

I GroupGen samples a description of the group

T¥gassumptiLp* . Sample Lg , p ) ← Group Gente ) , where log p
=

poly and (g) = Ipt .

Then
,
for all

efficient adversaries A
,

Prc her Zp
't

; x ← A ( p , g ,
h) : h -

-

g
" ] =

neg Ka ) .

Common setting : choose
p to be a

" safe prime
" (p

= Loft I , where q is also prime )
↳ Avoid : when

p
- I is

" smooth
" ( splits into product of small princes) ,

there are efficient algorithms for discrete log
| ↳ At 128 - bits of security , p is usually

n 3072 bits (much longer keys → will motivate elliptic . curve crypto)
→ In fact

, more common to work with prine-or.de groups leg.

,
a subgroup of prime order

of in Ipt when
p

'

- 2ft ')

Diffie-Hellmankey-xchange-o.LK 6 be a group
of prime order p with generator g

:

Alice BobxEh Zp y
Eh Ep

x

g-
gyLt t

derive a key from derive a key from (defer key - derivation

g , g? gut , got g. gx.gs , get details for now
]

Claim: An eavesdropper who sees g. g? gud ( but does notknow X or y
) cannot derive the shared key ( in particular , eavesdropper

should not be able to compute GH ) .

Observe: Security of protocol requires
hardness of discrete log in Gl (why ?) .

However
,
discrete log by itself may not be

u ' I

sufficient
.

We require that GXY is had to compute given g , gx , g
't → this is thecomputationaldiffie.tk/lman-( CDH ) problem

f outputs group description (including order p and generating)

computationaldiffie-Hellmaassumptio.LT (Gl , g , p)
← Group Gen CIT) .

Then
,
the CDH assumption holds in 6 it

for all efficient adversaries A
,

Pr I x. y E
Ep ; h ← AUG , g. p) , g

"

,
gud ) : h -

-

g
" f-

neg
Ka)

.

CDH assumption in a group G
says given g, g? g

't
,
hard to compute gat .

How do we construct a key - derivation function ? Typically use a hash function H : { 0,13
*

→ I 0,13
"

↳ For instance
,
shared key is k ← H (g , g? g

'd
, gas) .

To argue security of Diffie-Hellman key - exchange protocol , we need to assume something about H :

-

Option : Make the Hash - DH assumption : given g. gx.gs ,
H (g ,g7g3g×Y ) is indistinguishable from random

- Option: Model H as a
" random oracle " ( an ideal object that implements a trulyrandom function)

↳ In this model
, if adversary cannot

query
H on Cg . gt , gut, g

'T )
,
then Hlg ,g9g7g 'T) is uniformly random and

completelyfrom the view of the adversary .

↳
Security of DH key

-

exchange thus follows from CD4 assumption in the r←¥k model



Diffie-Hellman key - exchange is an anonymous key - exchange protocol : neither side knows whee they are talking to

↳ vulnerable to a
"

man - in - the - middle
"

attack

Alice Bob Alice Eve Bob
X -

Za
9- runs ⇐ →
÷

÷÷.÷ .

.
.

÷÷÷÷÷÷
£ } f I I Bob and Alice t Bob

god got
xzz

have me idea !

g

What we require : auttd key - exchange ( not
anonymous) and relies on a root of trust leg. , a certificate authority )

↳ On the web
,

one of the parties
will authenticate themself by presenting a certificate

↳ Discussed in greater detail in computer security / applied crypto course lask in OH if this is interesting)

Publickeyencryption : In symmetric encryption , only holder of secret key can encrypt .

In public
-

key encryption , everyone can

encrypt , and secret key is only needed for decryption .
[ Example application : encrypted email ]

Definition
.

A public -

key encryption
CPKE) scheme consists of three algorithms ( KeyGen , Encrypt , Decrypt) with the following

properties :

Key Gen ( It ) → (pk ,
Sk) : Generates a public key pk and a secret key Sk

.

Encrypt Cpk , m ) → Ct : Takes the public key pk and a message m and outputs a ciphertext at
.

Decrypt Csk ,
at ) → m : Takes the secret key and a ciphertext Ct and outputs a message m .

We
say the PKE scheme is correct if for all messages m

,

Pr E Cpk , sk) ← Setup CH ) : Decrypt Csk , Encrypt Cpk, m )) = m I =L
.

We
say

that the scheme is semcare if for all efficient adversaries A
,

PKE Adv CA] = two - W
,
I -

-

neg la )

where Wb is defined to be the output of the following experiment
:

adversary message zspakchallenger
-

Mo
,
M ,

E Ah
-

- Cpk , sk ) ← key Gerth )

/ crypt /

1- -

✓

b' C- { 0,13

←
output of the experiment

Observations
.

- For public-key encryption , semantic security implies CPA -

security .

[follows via a hybrid argument
- check this ! ]

-

Semantically - secure PKE schemes must be randomized . [ Check this !)

× - Observation : What if we reuse the
PKE-fomdiffie-Hellma-EEEncryptiond.io 9- -

gy same GX for multiple
c-

! I sessions ( " Static " Diffie-Hellman)?

gxy gag Ida : Let g
" be the public key and

use GXY to hide the

message.



EIGamalEncrypt .

Let Gl be a group
of prime order p.

We construct a PKE scheme as follows :

Key

Gen
C I ' ) : Sample X ← Zp and set h=g ? [ 1st DH key - exchange message ]

Output pk=h and sk -

- X
.

Encrypt Cpk , m ) : Choose y
← Zp . Output Ct = (g

't
,

4cg
,
h
, g
'
,
h
's
) to m) C2nd DH key - exchange message]

[
assume H : Gl → { 0,13

"
and ME 10,13

"

Decrypt Csk , Ct) .
Write Ct = ( Cto

, Cti ) and compute et
, Ot H (g ,

h ,
Cto

,
cto )

Corsg : Take
any message m E { 0,13

"
and Cpk , sk) ← key Gen ( It ) .

If we compute et ←
Encrypt Cpk , m )

,
we have

Ct = Cgd ,

Hlggx
, g

'
, gas ) Ot m )

.

The decryption algorithm then computes

I H (g. g? gut
, g

" ) Ot m ] to H I g. gx , ga ,
gun) =

m

Security .
Follows from CDH in the random oracle model

.

P#¥ . Suppose we have adversary A that breaks semantic security .

We use A to construct an adversary B that

breaks CDH in Gl :

algorithm B CD4 challenger

⇒
-

÷÷÷¥n
x. sea .

-

(g'd , r ) where

It
{0,13n

i acanaisoasklLto evaluate HC . )
-

In the random oracle model
,
if A does not query H (Z ) for any 2-

,
then value of Htt ) is uniformly random to A

.

Thus
, message is hidden information -

theoretically unless A queries HE ) at Cg

,g7gY
, g

't )
.

In this case , B learns

god and succeeds in answering
the CDH challenge.

↳ Proof shows that the random oracle can be used to extract information from an adversary .

Securitywithoutrandoa ? Make a stronger assumption .

Decisionaldiffie-Hellm.am# Let ( Gl
, p , g) ←

Group Gen CIA) .

Then
,
the decisional Diffie-Hellman CDDH) assumption holds in G

if for all efficient adversaries A :

{ x. y Eep : I g. gx , go , gas ) ) E lx.g.EE Zp : ( g.gx.gs , gt ) )
Namely, not only if god hard to compute CCDH)

,
it is even indistinguishable from random !

Groups where DDH believed to be hard :

- Let p=2qtI where
p , q are prime .

Let ① be the subgroup of order of
in 2p* ( specifically ,

the subgroup of "

quadratic

residues
"

- G = { HE 2p* : there exists X E Ept
' where h=X2 (modp) } ]

- The set of points on an
"

elliptic curve
"

over Ttp ( will discuss in greater detail in future week ]
↳ In all of these groups , the best algorithm for solving DDH is to solve discretely ( seemingly a much harder problem ! )

Relationship between assumptions :

DDH ⇒ CDH ⇒ discrete log
strongest
assumption

-
weakest

assumption



PKEfoomDDH-a.LI 6 be a prime order
group

of order
p

and generator g where DDM holds
.

Let the message space be 6
.

key Gen CI
' ) : Sample X ← Zp and set h=g ?

Output pk = h and sk = X
.

Encrypt Cpk , m ) : Choose y
← Zp . Output Ct = (g

't
,
h't . m )

sk
Decrypt Csk , Ct) .

Write Ct = ( Cto
, Cti ) and compute Ct

, Icto

Easy to check correctness and semantic security holds under DDH

PeH¥ts : Let 6 be a group with prime order p and generator g . Suppose there exists an efficient algorithm

A that solves discrete log in do onaverage_ :

Pr ( x E Ip : A (g , gx) = X ] = E for non - negligible E

Can we use A to solve discrete log in the worst-case ?

Given a discrete log challenge (g.h) , choose random r and run A on (g ,
hr )

. By construction
,
hr is uniformly random

,

so with prob .
E

,
A outputs X such that hr=g? Then g×r

"

= h so Xr
- ' (mod p) is the discrete log.

↳ We have reduced solving any discrete log instance to solving a randominstancee of discrete log.

↳
Solving random instances is ashed as solving any instance

↳ Discrete log is either hard almost everywhere or easy
almost everywhere ( no middle ground)

Visually:

Algorithm A works on an Algorithm B work with prob .
E

E - fraction of Gl
everywhere in G

whydo-wecaraboutref-mducibiity7.IN cryptography , we often rely on problems that are hard onaverage_ I for

randomly sampled instances )
.

For instance
,

an encryption scheme secure for 90% of the keys is not useful . When a

problem has a random self reduction
, worst-case hardness ⇒

average - case hardness
.

PR#DDH : Let G be a group of prime order
p

and generator g .

We construct a PRG as follows :

-

The description of the PRG includes a
group

element h =

g
"

where X I Zp
- PRG C

y) → (gd
, gas )

Security is immediate under DDH : ( g. gx.gs , gas )
E (g , gx , g

's
, gr ) where r E Ip

ftp.#cPRFsfnmDDHlNaor-gold .

Let ① be a
group of prime order p and generator g .

We construct a PRF

F : 2pm x { 0,13
"

→ Gl as follows :

Fl ko
,
a , . . .

,
xn )

,
C x

, ,
. . .

,
xn )) : = gaoietdi

"

"

subset product in the exponent
"



seceityofNaor-R-eingod.TK Naor -

Reingold construction is an
"

augmented tree
"

construction
.
Define

Gnr Ca
, GB ) → (GB , gap)

d ↳
Co) (1)
GNR GNR

Construction proceeds as follows :
gao

More generally :

97 F ( ( do ,
. . .

,
An )

, Xi ,
. . . ,

Xn) : =

A ¥1 t ←

g
"

Gain la
,
gdo) Girls . ,g

"

I for i -
- I to n :

= gao = gon t ← GEE Hi
,
-4

xz§•• =L

Gii' la .gg Giri' Kaga)

= gao = good
2

Suppose that for all Q = poly (X) , the following function is a secure PRG :

G ' (do
,
a

, . . .

, da)
= ( Gnr Go,g% . . .

,
Gnr (do

.IQ//--lg9gHi....gdn.gdoaQ
)

Then
,
the Naor - Reingold construction is a secure PRF

.

Promoted .
We use a hybrid argument Nybo , . . . ,Hybn where evaluation in Hybi work by replacing first i levels of the tree with

uniformlyrandom values :

!
!

Instead of computing
Giri Hi , - ) and Giri (a , ;)

,

! replace them with uniformly random elementsy•.g%Giri
'
ca

.
. , on"r' ca .

. ) :\ ! gro gr.

• • ; • •

Gi
"

his ai and
!
Gi
"

his ai and

• • • •
!

• • • •

Nybo Hyb .

But
. . . on layer n , we need to replace 2

"

¥ poly (7) number of values
,
which does not follow from the above assumption !

↳
Adversary only can see polynomial outputs , so we never need to replace / simulate the entire tree

, only the paths

that the adversary queries in the PRF security game. If adversary only makes Q '
- poly CX) queries , then at

any
level

,

we need to switch utmost Q nodes from pseudorandom to truly random
,
which follows from our assumption .

Thus
,
suffice to show that G

'
is a secure PRG .

To do so
,
we will rely on the DDH assumption .

Claim . If DDH holds in Gl
,
then G' (do , 4 ,

. . .

, # = (g
"

, g
" "

, . . .
,gd " ,g%%) is a secure PRG

.

Proof CSketch
.

We show that if there is a distinguishes A for G '

,
then there is an adversary B that breaks the DDH assumption .

Main challenge : Algorithm B is
given a single DDH challenge (g , g

"

, g
'd

,
get ) where Z = Xy or Z tap and has

to simulate a PRG challenge for A
. The PRG challenge should be one of two possibilities :

- Pseudorandom : (g
' '
, god

'

, . . . , gk , g
" Tn ) where X

, y , , . . .

, yn
Eh Ip

- Random : (g
'd '

, g
"

, .
. . , g

'd n

, g
" ) where g , , . . . syn ,

a ,
. . .

,
2nd Ep



Pivoted .
Our goal is to take the DDH challenge and construct a PRG challenge :

lg.gx.gs , g
" ) → (

g
"

, GM ,
. . .

, g
"

, g
" " )

(g , g
"
,gY , gt ) → ( g

"
, g

"
, . . .

, g
"

, g
" " )

Idea is to rely on a random self - reduction for DD 4 .
Consider the mapping

(g ,
h
,
u
,
v ) → (g ,

h
, udgts , vdg

" ) where a ,pE2p
Suppose Lg ,

h
,
u
,
v ) = Ig,g× , gud , GM) is a DDH tuple . Then ,

(
g ,
h
, udg? rahis ) = (g ,g× , g

" '- P
, ga

" '' PY ) is still a DDH tuple and moreover gdYtP is uniformlyrandom !

Suppose lg.hu
,
v ) = (g. g

"
, g
"
, gt) is not a DDH tuple . Then ,

(g ,
h

, udg ? v
- HB ) = (g , g

"

, g
" " '

,
ga

" Pt ) is not a DDH tuple .
Moreover ayt p and aztpx are

uniform and independent Cover the choice of a
, p) so gdYtP and gdttts

"

are uniform and independent over G !

↳
check this ! [ Essentially , your argument shows that ha

,p
Cx) txt p is pairwise independent if

d
, per Zp .Thus

, we have a
mapping that sends DDH tuples ⇒ fresh DDH tuples and } exactly what we

non - DDH tuples ⇒ uniformly random values need to complete the

above argument.

Essentially , algorithm B applies the random self - reduction for DDH Q - times to the DDU challenge (using independent

randomness) to simulate the PRG challenge for A
.


