
CS 6222: Introduction to Cryptography Spring 2020

Homework 1: Symmetric Cryptography

Due: February 12, 2020 at 5pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.virginia.edu/dwu4/courses/sp20/static/homework.tex

You must submit your problem set via Gradescope. Please use course code MB84NW to sign up.

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the computing
IDs of all of your collaborators with your submission. Refer to the official course policies for the full details.

Acknowledgments. These problems are taken/adapted from problems in Boneh-Shoup.

Problem 1: Pseudorandom Generators [16 points]. Let G : {0,1}λ→ {0,1}n be a secure PRG. For each of
the following functions G ′, indicate whether it is a secure PRG or not. If it is secure, give a formal proof; if
not, describe an explicit attack.

(a) G ′(s) :=G(s)‖(G(s)⊕1n), where 1n denotes the all-ones string of length n.

(b) G ′(s1‖s2) :=G(s1)⊕G(s2).

(c) G ′(s1‖s2) := s1‖G(s2).

Please refer to this handout for examples of how to formally show whether a construction is secure or not.

Problem 2: Key Leakage in PRFs [8 points]. Let F : {0,1}λ× {0,1}λ → {0,1} be a secure PRF. Use F to
construct a function F ′ : {0,1}λ+1 × {0,1}λ→ {0,1} with the following two properties:

• F ′ is a secure PRF.
• If the adversary learns the last bit of the key, then F ′ is no longer secure.

You should (a) prove that F ′ is a secure PRF; and (b) describe an attack (and compute the advantage) when
the adversary knows the last bit of the PRF key. Hint: Try changing the value of F at a single point. This
problem shows that leaking even a single bit of the secret key can break PRF security.

Problem 3: Encrypting Twice? [8 points]. Intuitively, encrypting a message twice should not harm
security. It turns out that this is not always true. Let (Encrypt,Decrypt) be a cipher and define the “encrypt-
twice” cipher (Encrypt2,Decrypt2) where Encrypt2(k,m) :=Encrypt(k,Encrypt(k,m)).

(a) Give an example of a cipher (Encrypt,Decrypt) that is semantically secure, but (Encrypt2,Decrypt2)
is not semantically secure.

(b) Suppose (Encrypt,Decrypt) is CPA-secure. Prove that (Encrypt2,Decrypt2) is also CPA-secure.

https://www.cs.virginia.edu/dwu4/courses/sp20/static/homework.tex
https://gradescope.com/
https://www.cs.virginia.edu/dwu4/courses/sp20/info.html
https://toc.cryptobook.us/book.pdf
https://www.cs.virginia.edu/dwu4/courses/sp20/static/reductions.pdf

Problem 4: Digital Rights Management [20 points]. The Content Scrambling System (CSS) used for
encrypting DVDs uses a “hybrid” encryption scheme designed as follows. First, every authorized DVD
distributor is given a device key k that it embeds in any DVD player it sells. We assume that there are a
small number n of authorized DVD player manufacturers with device keys k1, . . . ,kn . To encrypt a movie
m, one first generates a “payload” key k ′ that is used to encrypt the movie. The payload key k ′ is then
encrypted with each of the device keys k1, . . . ,kn to form the header of the DVD. The overall encrypted
DVD then looks like the following:

Encrypt(k1,k ′)‖· · ·‖Encrypt(kn ,k ′)︸ ︷︷ ︸
header

‖Encrypt(k ′,m)︸ ︷︷ ︸
payload

.

(a) Show how a device with key ki is able to decrypt the payload.

(b) Suppose that the underlying encryption scheme (Encrypt,Decrypt) is CPA-secure. Give an informal
argument why the above hybrid encryption scheme is also CPA-secure (namely, the keys of the
hybrid encryption scheme is defined to be the tuple (k1, . . . ,kn) and the hybrid encryption algorithm
samples a fresh key k ′ to encrypt the payload). Formalizing this argument will rely on a technique
called a hybrid argument, which we have not discussed yet.

As we saw in lecture, the core cryptographic design of CSS was insecure, and not long after its deployment,
hackers were able to extract a key from an authorized device and use it to build a “pirate player” (e.g.,
DeCSS). Unfortunately, because each key was shared across all devices by the particular manufacturer,
disabling the compromised key would simultaneously disable a large number of honest devices. This
design flaw in CSS demonstrates that relying on shared global keys is not a good idea.

Subsequently, when HD-DVD and Blu-Ray came out, the movie industry introduced the Advanced Access
Content System (AACS) scheme which associated a random device-specific key with each device. The
idea is as follows: suppose there are at most n = 264 devices, each with a unique 64-bit serial number
i ∈ [0,264 −1]. These n devices are associated with the leaves of a binary tree T of height logn. Every node
j ∈ T is associated with an encryption key k j . For an index i ∈ [0,264 −1], let Si be the keys associated
with the nodes from the root node to the i th leaf node in T . The manufacturer embeds Si in device i (i.e.,
every device has exactly logn +1 keys). Movies are encrypted using a similar hybrid encryption scheme
as before. Namely, a payload key k ′ is first sampled to encrypt the movie. The payload key k ′ is then
encrypted using the key kroot associated with the root of T :

Encrypt(kroot,k ′)︸ ︷︷ ︸
header

‖Encrypt(k ′,m)︸ ︷︷ ︸
payload

(c) Suppose hackers compromise device t ∈ [0,264 −1] and use its keys to build a pirate player. Show
that the movie distributor can still encrypt the movie with a header of size O(logn) such that device t
can no longer decrypt, but every device i 6= t is still able to decrypt. Formally prove the correctness of
your construction.

(d) Suppose that hackers have now compromised a set of devices T ⊆ [0,264 −1]. Show that using a
header of size O(|T | logn), the movie distributor can encrypt a movie such that every device i ∉ T
can decrypt, but every device i ∈ T cannot. Formally prove the correctness of your construction. This
is an example of a revocation scheme.

https://en.wikipedia.org/wiki/DeCSS

(e) The tree T contains 265 −1 nodes. Storing a random encryption key for each node in the key will
require an exorbitant amount of space. Describe a way to compress the tree T to use at most 100
bytes of storage. Explain (informally) why your design does not compromise security.

While the AACS scheme addressed some of the limitations of CSS, the key revocation process was very
time-intensive. It was quickly discovered that hackers could extract new device keys significantly faster
than the movie industry could revoke them!

Problem 5. The BEAST Attack [10 points]. The TLS 1.0 protocol (used to protect web traffic) used
AES-CBC encryption with a predictable IV. Specifically, instead of sampling a random IV, the TLS 1.0
implementation set the IV to be the last ciphertext block from the previous ciphertext (i.e., the IV for the
(i +1)st message is the last ciphertext block of the i th message).

(a) State two advantages for choosing the IV in this manner compared to choosing a random IV.

(b) Unfortunately, this variant of AES-CBC is insecure. Describe a CPA-adversary against this scheme
that wins with advantage 1 (include an explicit advantage calculation in your answer). You may
assume that a random IV is used for the first ciphertext. Hint: It suffices to consider single-block
messages. This exploit was the basis of the BEAST attack on TLS 1.0 (2011). The take-away is that
simple (and seemingly benign) modifications to a cryptographic protocol can completely break
security!

Problem 6. CBC Padding Oracle Attack [10 points]. Recall that when using a block cipher in CBC mode,
the message must be an even multiple of the block size. When encrypting messages whose length is not an
even multiple of the block size, the message must first be padded. In TLS, if v bytes of padding are needed,
then v bytes with value (v −1) are appended to the message. As a concrete example, if 1 byte of padding
is needed, a single byte with value 0 is appended to the ciphertext. In TLS, the record layer is secured
using “MAC-then-Encrypt1” (which as we will soon see, is not the ideal combination). At decryption time,
the ciphertext is first decrypted (and the padding verified) before checking the MAC. In older versions
of OpenSSL, the library reports whether a decryption failure was due to a “bad pad” or due to a “MAC
verification failure.” One might think that it was beneficial to provide an informative error message on
decryption failure. As you will show in this problem, this turns out to be a disaster for security.

Suppose an adversary has intercepted a target ciphertext ct encrypted using AES-CBC. Let cti be any
non-IV block in ct. Let mi be the associated message block. Show that if the adversary is able to submit
ciphertexts to a CBC decryption oracle and learn whether the padding was valid or not, then it can learn
the last byte of mi with probability 1 by making at most 512 queries. Here, the CBC decryption oracle only
says whether the ciphertext was properly padded or not; it does not provide the output of the decryption
if successful. Then, show how to extend your attack to recover all of mi . Hint: Start by showing how to
test whether the last byte of cti is some value t by making 2 queries to the decryption oracle.

Are there settings where the server would repeatedly decrypt ciphertexts of the user’s choosing? It turns
out that when using IMAP (the protocol email clients use to fetch email) over TLS, the IMAP client will
repeatedly send the user’s password to the IMAP server to authenticate. With the above padding oracle
(implemented using a “timing channel”), an adversary can recover the client’s password in less than

1In MAC-then-encrypt, the encryption algorithm first computes a MAC t on the message m, and the ciphertext is the encryption
of the message-tag pair (m, t).

https://docs.secureauth.com/pages/viewpage.action?pageId=14778519

an hour! This problem shows that if a decryption failure occurs, the library should provide minimal
information on the cause of the error. This type of “padding oracle” attack was the basis of the “Lucky 13”
attack on TLS 1.0 (2013)—many years after they were first discovered (2002) and thought to be patched!

Problem 7: Time Spent [3 extra credit points]. How long did you spend on this problem set? This is for
calibration purposes, and the response you provide does not affect your score.

Optional Feedback [0 points]. Please answer the following optional questions to help us design future
problem sets. You do not need to answer these questions. However, we do encourage you to provide us
feedback on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf

