CS 6222: Introduction to Cryptography Spring 2020

Homework 4: Public-Key Cryptography

Due: April 15, 2020 at 5pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:
https://www.cs.virginia.edu/dwud/courses/sp20/static/homework.tex

You must submit your problem set via Gradescope. Please use course code MB84NW to sign up.

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the computing
IDs of all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1. Baby Bleichenbacher [25 points]. In this problem, we will explore a simplified variant of
Bleichenbacher’s CCA attack against PKCS#1 encryption. Let (IV, e) be the public-key for an RSA-based
encryption scheme, where N = pg is a product of two primes and e is invertible modulo ¢(N) (i.e., there
exists d such that ed = 1 mod ¢(N)). For x € Zy, define the function fy: Zy — {0,1} where fx(r) =1if
the value of x-r (mod N) is greater than N/2 (where we view x-r (mod N) as an integer between 0 and
N —1), and 0 otherwise.

(a) Construct an algorithm that given O(log N) queries to f recovers the value of x € Z. Your algorithm
can make arbitrary queries to f;. Prove the correctness of your algorithm.

(b) Suppose an adversary has intercepted an RSA ciphertext ¢ € Zy where ¢ = x¢ (mod N) for some
x € Zn. Moreover, suppose the adversary has access to a “partial” decryption oracle that takes as
input an input z € Zx and outputs 1 if z4 (mod N) is greater than N/2 (where we view z4 (mod N)
as an integer between 0 and N —1), and d = e 1 (mod ¢@(NN)) is the RSA decryption constant. Use
your result from Part (a) to show how the adversary can decrypt c to obtain the message x by making
O(log N) queries to this partial decryption oracle.

In the next problem, we will explore the full Bleichenbacher attack on PKCS#1 encryption. It turns out that
the handshake in SSL 3.0 implements a variant of the partial decryption oracle described above, which
enables an active adversary to decrypt any ciphertext of its choosing (in the case of SSL 3.0, this was the
“pre-master secret” used to derive the keys for the record layer)!

Problem 2. Bleichenbacher Attack on PKCS#1 [35 points]. Recall that a RSA-PKCS#1 encryption of a
message m € {0, 1}" under an RSA public key (N, e) is formed by first constructing the padded message
x < 00]|02||r[100||m € Z where r consists of a sequence of random non-zero bytes, and then computing
¢ — x° € Zy. This scheme was used in the SSL 3.0 handshake.

Specifically, in the SSL 3.0 handshake, the client chooses a random “pre-master secret” k (used to
derive the session keys) and encrypts k using RSA-PKCS#1 under the server’s public key to obtain a
ciphertext c. Upon receiving the encrypted key c, the server attempts to decrypt the message; if the
decryption yields a message that is not a well-formed PKCS#1 message, the server sends an abort message

https://www.cs.virginia.edu/dwu4/courses/sp20/static/homework.tex
https://gradescope.com/
https://www.cs.virginia.edu/dwu4/courses/sp20/info.html

to the client, and otherwise, it continues with the handshake. In this problem, we will say that a valid
PKCS#1 ciphertext is one that starts with the two-byte sequence 00[/02.! Bleichenbacher showed that this
single bit of leakage (via a “padding oracle”) can be leveraged to mount a full key-recovery attack against
SSL 3.0. In this problem, you will implement this attack.

(a) Bleichenbacher’s attack is described in Section 3.1 of this paper. We have provided starter code
that contains a basic implementation of RSA-PKCS#1 encryption (see main.py). Your objective
is to implement Bleichenbacher’s attack described in Section 3.1 of the paper. In particular, your
algorithm should be able to decrypt an intercepted RSA-PKCS#1 ciphertext given knowledge of only
the public key (N, e) and access to the following padding oracle:

on input a ciphertext c € Z, the padding oracle outputs 1 if c® € Z is a valid PKCS#1 message
(starts with the two-byte sequence 00| 02) and 0 otherwise

In our starter code, we use a 128-bit RSA modulus (which is easily factored), but your implementation
should also support a 1024-bit RSA modulus with several minutes of computation (factoring a general
1024-bit modulus is well beyond the reach of current techniques). Your task is to implement the
decrypt method in bleichenbacher.py. You should not change the interface for __init__ or
decrypt; otherwise, you are free to implement the algorithm however you prefer (using standard
Python libraries). Your code will be evaluated only for correctness (so if you prefer a different
approach to breaking RSA-PKCS#1, such as factoring the modulus, that is also acceptable?). Some
helper functions are provided in util.py. For the submission, please upload your code (consisting
of onlybleichenbacher.py to Gradescope under Homework 4A). Note that your implementation

must work with our provided main.py and util.py.

(b) Bleichenbacher’s attack still applies if the server performs additional validation on the PKCS#1
message. For instance, Bleichenbacher considers a valid PKCS#1 message to be one that starts with
00]/02 and is followed by 8 non-zero padding bytes. Suppose the padding oracle outputs 1 only if the
ciphertext decrypts to a message that satisfies this requirement. How would this affect the concrete
running time of the algorithm you implemented above? Explain briefly. Note that you do not need to
perform any concrete calculations here (a short 2-3 sentence explanation suffices). Hint: Please feel
free to refer to Section 3.2 of Bleichenbacher’s paper.

Problem 3. DDH in Composite-Order Groups [10 points]. Let G be a cyclic group of order 2g where g
is odd. Let g be a generator of G. Show that the DDH assumption does not hold in G. Remark: This shows
that the DDH assumption does not hold over Zj, whenever p =24 + 1 for some odd g. In fact, the DDH
assumption does not hold in Z,, for any prime p (there is an efficient distinguisher based on Legendre
symbols). However, assumptions such as CDH or discrete log still plausibly hold over Z,.

Problem 4. Time-Lock Puzzles [20 points]. A time-lock puzzle is a cryptographic mechanism that
enables someone to send a message to the future (e.g., the earliest the message can be decrypted is a week
from today or a month from today).

n practice, PKCS#1 will also check that the header is followed by sufficiently-many non-zero padding bytes, but for simplicity
in this problem, we will ignore this detail and only require checking the first two bytes.

2Indeed, if you break the 1024-bit scheme via a factoring algorithm, you will automatically receive an “A+” in this course (and
probably throw in a Ph.D. too).

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

(a) Consider the following approach based on any symmetric encryption scheme. Sample a random
key k 20,1} and output the ciphertext ct — Encrypt(k, m) together with the first A — ¢ bits of the
secret key k. To decrypt ct, the adversary would have to brute force the last ¢ bits of the key, which
would take time 2. By choosing t accordingly, the encrypter can control the minimal amount of
time needed before the secret can be revealed. Briefly explain why this scheme is not secure: namely,
describe how a parallel adversary with ¢ processors can recover m in time 2!/ ¢. Note: This is intended
to be a warm-up and a one sentence response suffices.

(b) To construct a time-lock puzzle, it is essential to base it on a sequential computation (that is not
amenable to parallelism). One such candidate is modular exponentiation in an RSA group. Let
N = pq be an RSA modulus and sample a random g & ZY,. Itis believed that computing the function
fn,g(x) 1= g* € Zy requires Q(log x) sequential multiplications. This yields the following approach
for constructing a time-lock puzzle. The puzzle with time parameter ¢ is the triple (I, g,) and the
solution is the value z = gz(zt) (mod N). We can use this to encrypt a message by hashing z to obtain
a key k and using k to encrypt the message. Show that there is an algorithm that recovers z from
(N, g, t) using O(2") modular multiplications (over Zy). Once again, the encrypter can choose the
value of ¢ based on the duration under which the secret should remain hidden.

(c) In the above construction, the encrypter needs to be able to efficiently compute the solution z in
order to encrypt their message. Show that the encrypter (who chooses N and g 2 Zy,) is able to
compute z with only O(#) modular multiplications. Thus, this gives a time-lock puzzle where the
decrypter needs to run in time 2! while the encrypter runs in time 7 for a tunable parameter t.

(d) In 1-2 sentences, explain why the puzzle solver cannot use the algorithm in Part (c) to solve the
puzzle with O(¢) multiplications.

(e) Suppose we implement the above construction over Z,, for prime p. Show that this construction is
insecure (i.e., the decrypter can now recover the secret in time much smaller than O(21)).

Remark: In 1999, Ron Rivest (one of the inventors of RSA) prepared a time-lock puzzle as part of the
opening of MIT’s Laboratory for Computer Science, to be opened on the 35th anniversary of the lab’s
opening. As it turned out, two independent groups successfully solved the time-lock puzzle earlier last
year (15 years earlier than anticipated)! As it turns out, estimating the speed of computers 35 years into
the future is no easy task.

Problem 5: Time Spent [3 extra credit points]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide does not affect your score. To receive the extra
credit for this problem, you must submit your homework to Gradescope (with the provided template) and
properly assign all problems to their respective pages.

Optional Feedback [0 points]. Please answer the following optional questions to help us design future
problem sets. You do not need to answer these questions. However, we do encourage you to provide us
feedback on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

https://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt
https://www.wired.com/story/a-programmer-solved-a-20-year-old-forgotten-crypto-puzzle/

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

