
Focus thus far in the course : protecting communication leg, message confidentiality and message integrity)

Remainder of course : protecting computations

E-knowledge : a defining idea at the heart of theoretical cryptography [
with surprising implications
(DSAIECDSA signatures based on 2K!)

↳ Idea will seem very counter-intuitive
,
but surprisingly powerful

↳ Showcases the importance and power of definitions leg. , " What does it mean to know something ?
" )

We begin by introducing the notion of a
"

proof system
"

- God : A prover wants to convince a verifier that some stated is true

e.g. ,
"

This Sudoku puzzle has a unique solution
"

) these are all examples of"

The number N is a product of two prime numbers p and q
"

statements

"

I know the discrete log of h base g
"

We model this as follows ; [
the verifier is assumed to be an efficient algorithm

yw¥
⇒ × :

pstna-ae.menandthafj.LY Prover is trying
to prove (known to both

↳ We will write L to denote the set of true
Tl : the proof of X

statements (called a
"

language
"

)

↳
b E lo , 13 - given statement X and proof it , verifier decides whether to accept or reject

Properties we care about:
- Completeness : Honest prover should be able to convince honest verifier of true statements

txt L : Pr [ Ti ← PIX) : V (x,a) = I ] = I
-Soundness : Dishonest prover cannot convince honest verifier of false statement

f- x ¢ L : Pr [ IT ←PCX) : V(X , it ) = I ]
< 2J Important : we are riot restricting to efficient provers

.

Typically, proofs are
"

one- shot
" lie

, single message from prover to verifier) and the verifier 's decision algorithm is deterministic
↳ Languages with these types of proof systems precisely coincide with NP (proof of statement x is to send NP witness w )

Going beyond NP : we augment the model as follows
- Add randomness : the verifier can be a randomized algorithm
- Add interaction : verifier can ask " questions

" to the prover

InteraGivepwotsyotem# [Goldwasser - Micali - Rackoff ) :

prover (x) verifier (x)
-

=/- Set of languages that have an

a- interactive proof system is denoted

/# ) Ip
.

gangway, µ, can be decided

'
in polynomial space [very

i Theorem (Shamir) : IP -
- PSPACE

- ↳z - large class of languages ! ]



: interaction and randomness is very useful
↳ In fact

,
enables a new property called zenrknowtedge

Consider following example: suppose prover wants to convince verifier that N = pg where p, q are prime (and secret)
.

prover
(N

, p , q) verifier (N)

T=)
f
accept if N = pg and reject otherwise

Proof is certainly complete and sound, but now verifier atso learned the factorization of N
...
(may not be desirable if prover was trying

to convince verifier that N is a proper RSA modulus (for a cryptographic scheme) wi¥eveay factorization in the process
↳ In some sense, this proof conveys information to the verifier lie

,
verifier learns something it did not know before seeing
the proof ]

Zkdge : ensure that verifier does not learn anything (other than the fact that the statement is true)

H¥fim¥ ? We will introduce a notion of a
"

simulator.
"

for a language L
V

Definition. An interactive proof system (P
,
V) is zero- knowledge if for all efficient (and possibly malicious) verifiers V *

,
there

exists an efficient simulator S such that for all X EL :

View
v* ftp.v> (x)) E s (x)
-

random variable denoting the set of messages
sent and received by V* when interacting with the prover P on input X

What does this definition mean?

Viewy* (P⇒ V* (x)) : this is what V* sees in the interactive proof protocol with P
S (x) : this is a function that only depends on the statement X

,
which V* already has

If these two distributions are indistinguishable, then anything that V* could have learned by talking to P, it could have learned
just by invoking the simulator itself, and the simulator output only depends on X

,
which V 't already knows

↳ In other words
, anything V* could have learned lie

, computed) after interacting with P, it could have learned without

ever talking to P !
Very remarkable definition !
Ican in

fact be constructed from Owers

Mkade : Using cryptographic commitments
,
then every language L E IP has a zero-knowledge proof system .

↳ Namely, anything that can be proved can be proved in zero- knowledge !

We will show this theorem for NP languages. Here it suffices to construct a single zero-knowledge proof system for an

NP - complete language. We will consider the language of graph 3- colorability.

↳ p
3-colorable

←
not 3 -colorable

a.f-B.a. 0¥Hood o-
d

Ihrig : given a graph G , can you color the vertices so that no adjacent nodes have the same color ?


