
Trivial proof of knowledge : prover sends witness in the denar to the verifier
↳ In most applications, we additionally require zero - knowledge

Note : knowledge is a strictly stronger property than soundness
↳ if protocol has knowledge error E ⇒ it also has soundness error E (ie

. a dishonest prover convinces an honest verifier of a
false statement with probability at most E)

assume g, he GProvingknowledgeofdiscreteloglschnorrbprotoc.co#~ where Gi has prime order q

Suppose prover wants to prove it knows x such that high " lie
. prover demonstrates knowledge of discrete log of h base g)

_Pe verifier

÷:
c- CEZp

2- ← rt Cx E-
- lluverifythat g

"
= u . h
'

Completeness : if z -- rt ex , then
get = grtox = grgcx = u . he zero knowledge only required to hold against an honest verifier

# (e.g . . view of the honest verifier can be simulated)

Honest-VerifierZ-ero-knowkdgy.baild a simulator as follows (familiar strategy : run the protocol in
"

reverse
" ) :

on input Lg , h) :
1. sample Z E Ip
2. sample CE Ip [ uniformly random challenge
3
.
set a = 54ha and output (u, c, Z)

uniformly randomJ
t chosen so that lgsimualsatedhetraieaftraisjipdentiw.at/h daistribnotned, verifier

group element since GZ = u . he
-

z is uniformly random relation satisfied by a( valid proof )
What goes wrong if the challenge is not sampled uniformly at random lie, if the verifier is dishonest)
Above simulation no longer works (since we cannot sample 2- first)
↳ To get general zero- knowledge, we require that the

verifier first comet to its challenge (using a statistically hiding commitment)

for simplicity, we assumeif P* succeeds with probability 1

Knowledge : Suppose P* is (possibly malicious ) prover that convinces honest verifier with probability 1. We construct an extractor as follows:

I. Run the prover P* to obtain an initial message U .

2. Send a challenge C
,
⇐ Ep to P! The prover replies with a response Zi .

3 .
"Rewind

"

the prover P* so its internal state is the same as it was at the end of step 1. Then , send another

challenge Cz ⇐Ip to Pt. Let Zz be the response of Pt.
4. Compute and output X = (Z ,

- za) (c, - cis
'
c- Ep .



Since P't succeeds with probability 1 and the extractor perfectly simulates the honest verifier's behavior
,
with probability 1 , both be, Ci , 2- i)

and Lu , ca, Zz) are both accepting transcripts . This means that

g
Z '
= u . h

" and g
⇐

= a. h
"

⇒ q?=µ2÷ ⇒ g
Zi tax

= g
Zz tax

←
with overwhelming probability,

⇒ X = (z ,
- z) (c , - Cz)

- I
C- Ip 9th

Thus
,
extractor succeeds with overwhelming probability.

(Boneh- Shoup , lemma 19.2)
If P" succeeds with probability E

,
then need to rely on

"

Rewinding Lemma" to argue that extractor obtains two accepting
transcripts with probability at least EZ - Yp.

How can a prover both proveknowtedge and yet be zero- knowledge at the same time?

↳ Extractor operates by
"

rewinding
"

the prover lit the prover has good success probability , it can answer most challenges correctly.
↳ But in the real (actual) protocol , verifier Canet rewind (i.e . . verifier only sees prover on fresh protocol executions) , which can

provide zero- knowledge.

I#fiatipntd¥g :

f-
client's

..
..

✓ Public verification key
client (x) secret (credential) server (g, h=g× ) Essentially, the discrete log of h (base g) is
-

=
the client's " password

"

and instead of sending
- the password in the clear to the server

,
the client

protocol is precisely 3- round
proves in zero-knowledge that it knows X

Schnorr proof of knowledge of discrete log

Correctness of this protocol follows from completeness of Schnorr 's protocol
(Active) security follows from knowledge property and zero- knowledge
↳ Intuitively : knowledge says that any client that successfully authenticates must know secret X

zero -knowledge says that interactions with honest client i.e
,
the prover) do not reveal anything about X

(for active security, require protocol that provides general
(
zero- knowledge rather than just HV2K)

More general view : E- protocols (Sigma protocols)

prover (x,
g. h

-

y
'

r
Verifier

& "
commitment "

verifier has no
- ( secret raidoneness ( Arthur - Merlin proofs)

V← "

challenge " (random string ,
"

public- coin
")
-

rt EX Properties : I . Completeness- "

response
" -

protocol flow resembles a E 2. Honest- Verifier Zero - knowledge

Protocols with this structure (commitment - challenge - response) are called £proIoob (Sigma protocols) 3.proofofknowkdge.LI



Many variants of Schnorr protocols : can be used to prove knowledge of statements like :

- Common discrete log : X such that he =g? and hz=gF (useful for building a verifiable random function)
- DDH tuple : Ig , u, v. w) is a DDH tuple

- namely, that a- ga , v=gP, and w=gdP for a,p C- Is

↳ Useful for proving relations on El Gamal ciphertext leg. , that a particular ElGamal ciphertext encrypts either 0 or 1)

Basicelectronic :

P,
Inc Cpk , x ,) w/

only knows Pk
[

knows sk

P2 voteaggregaor voting
: authority
'

Enc Cpk, xn)
Pn# t

✓
candidate O wins it

decrypt to learn Ex: sum < I

Assume two candidates (0/1) L candidate 1 wins if
Sam > I

2

Reff : Public- key encryption scheme needs to be
"

additively homeomorphic
"

True for "

exponential El Gamal
"

Setup : Let 6 be group of order p
and generator g

xE Zp pk : (g , h=g×)

c- Ip
sk : x

Encrypt) : r E2pct: Cgr, hr . gx ) p
this is solving discrete log in 6

possible as long as m
' is smell - try

Decrypted!
"
"

compute 2- = Fx and output m
' e q. such that gm

'

= z

f
every value of m

' in the interval
]

Given two ciphertexts Cto = Cgr, hr . g%)
Ct

,
= Cg! h÷gx.)

→ compute (groth , hrotrigxotx,)
↳

encryption of the Sam Xo t X , C- Ip

( eanzbeaunsedd to sum encrypted votes ; resulting value between ]
Basic voting protocol still n¥ secure! Voter can be malicious and encrypt a non- 0/1 value (e.g. .

- 100 or 100) !
- Voters must prove that

their vote is valid (i -e
, encryption of 0/1 ), but without revealing the vote

- Language of valid ciphertext (defined with respect to g.h)
L = { luv) E G : Ir E Ip: :( u -- gr , v=hr or u = yr, v -- hrg) ) (chaum -Pedersen]

Implies proof of knowledge of DDH

tuples : if Cg , u , v , w) is DDH

tuple, then r=gr , w = ur for

some r E Ip , so proving knowledge
of common discrete log suffices


