
Starting-point : proof of knowledge of two discrete logs (for fixed g, , ga)
rI = { Cair) E Gl : I re Ip : u=g?, v

-
-ga }

forever verifier

r Ez Ui -- gr
Pz>

c Eep
C
-

Z= rt CX
-

check that g? = u. . hi and g? = Uz . hi

Completeness and HVZK follows as in Schnorr 's protocol.
Knowledge : Two scenarios :

/. If prover uses inconsistent commitment (ie
.,
U
, =L ,
" and Uz=gz

"
where r, ¥ rz)

,
then over choice of honest verifier's randomness,

then prover can only succeed with probability at most Yp :
Z = r, t X ,

C = rz t Xzc (if verifier accepts)
-

u
,
-

- g
" ✓ high taiga high

This means that

.

(r. - ra) = tlxz- x,)

If r, t rz ,
there is at most 1 c C- Ep where this relation holds

.

Since c is uniform over Ip , the verifier accepts with

probability at most Yp
2. If prover succeeds with Ipo ly Cx) probability , then it must use a

"

consistent
"
commitment

.

Can build extractor as in Schnorr's

protocol. Knowledge error larger by additive Yp term (from above analysis) .

Our language of valid votes :

{ = { can) : Ir : (u--gir , agar or u=gr , v --gi -g ,
), }

Iqhuivaenty : either know r such that

u --gi , r -- GE or u=gi , Yg , -- gi
- -

Looks like statement for knowledge of two discrete logs
(either for statement (un) or for statement (u , Yg,))

Or#f : A general approach for proving or of two statements (without revealing which one is true)

We will illustrate for simple case of

£ = { (hi , ha) : Ix:(h , -- g? or ha --gi)) (for fixed generator g]
Prover demonstrates knowledge of discrete log of either hi Er h2

~
Note : poorer may only know

✓ ↳ one of Xi
,
Xz

starting-point : Run too copies of Schnorr to prove knowledge of Cr, , ra) such that h , '- g,
" and high

prover
verifier

r
, ,rz%. Pebley : Honest prover only knows one of X

,
or Xz so it cannot

2- 4
,
Ca # Ip correctly answer both challenges (unless it knew both X,

and Xz)
Zi- r, t C , X, , 7, = rztcixz
-

Kaycee : Prover will simulate the transcript it does not know
.

Suppose prover knows X --X, . Then , it will first run the Schnorr simulator on input (g, had to obtain transcript (iz , Ez, E) .
↳ But challenge Ca may not match Ea

. . .
To address this

, we
will have the verifier send a single challenge CE Ep and

the
prover can pick c

,
and Cz such that c

,
t ca = C E Ip

prover (x,) verifier

(in .ci
,
E) ← Slg,ha)

r
,
E Zp

~

U l U2
-

#CE Ep
c. c- c- 5 ¥5,1
Z ,
← r

, tax ,

check that

g
"

= u
, hi'

g
"
-
- ai hi

"

Completeness, HVZK and proof of knowledge follow very similarly as in the proof of Schnorr's protocol

Proving that Lu
,
v) have the form (u

, D= (gn.hr) or Cu
, Yg) = lgn.hr) can be done by combining or-proof with proof of

knowledge of two discrete logs described above
.

- Namely, prover simulates proof of instance that is false and proves the statement
that is true

