
Definition . An encryption scheme Tls (Encrypt, Decrypt) is secure against chosen- ciphertext attacks (CCA- secure) if for all efficient

adversaries A
,
CCAAdvCA

,
TSE] = negl. where we define CCAADVCA, TSE] as follows :

b. C- {on}

adversary I

tCi← Encrypt(k, mi")c-±÷:¥"¥
b' Eloi) [adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertext it received from the

CCAADRLA , Tse] = /Pr[b' = l l b -- o] - prfbi.si/b=z]) challenger (otherwise, adversary can trivially break security)

↳ called an " admissibility
"
criterion

CCA- security captures above attack scenario where adversary can tamper with ciphertext
↳ Rules out possibility of transforming encryption of XHZ to encryption of

y
Hz

↳ Necessary for security against active adversaries (CPA- security is for security against passive adversaries]
↳ We will see an example of a real CCA attack in HWI

teen.
If an encryption scheme THE provide authenticated encryption, then it is CCA- secure .

ProofLI→ .
Consider an adversary A in the CCA- security game. Since Tse provides ciphertext integrity , the challenger's response
to the adversary's decryption query will be 1 with all but negligible probability. This means we can implement the

decryption oracle with the
"

output L
"

function. But then this is equivalent to the CPA- security game .
[Formalize using a

"

hybrid argument
") simple counter-example : concatenate unused bits to end of ciphertext

f
in a CCA-secure scheme (stripped away during
decryption)

Note: converse of the above is not true since CCA -security ⇒ ciphertext integrity.
↳ However

, CCA
-

security
t plaintext integrity

⇒ authenticated encryption

-a¥ay : Authenticated encryption captures meaningful confidentiality + integrity properties ; provides active security

Encrypt-Af: Let (Encrypt, Verity) be a CPA- secure encryption scheme and (sign, Verify) be a secure MAC. We define

Encrypt- then- MAC to be the following scheme :

Encrypt
' ((ke

,
km)

,
m) : c ← Encrypt (ke, m)

T T

ind¥t keys
t ← Sign (km, c)

output (c , t)

Decrypt
' ((KE

,
km) , Cc ,t)) : if Verify (km, c , -4=0, output t

else
, output Decrypt (ke , c)

Theorem .
If (Encrypt, Decrypt) is CPA - secure and (sign, Verify) is a secure MAC

, then (Encrypt
'

, Verify
') is an authenticated

encryption scheme
.

Protect. CPA - security follows by CPA- security of (Encrypt, Decrypt). Specifically, the MAC is computed on ciphertexts and nod

the
messages . MAC key is independent of encryption key so cannot compromise CPA -

security.

Ciphertext integrity follows directly from MAC security lie
, any valid ciphertext must contain a new tag on some

ciphertext that was not given to the adversary by the challenger .)

tmportantnotese: - Encryption t MAC keys must be independent. Above proof required this (in the formal reduction, need to be able to

simulate ciphertext /MACS - only possible if reduction can choose its own key).
↳ Can also give explicit constructions that are completelybnkg.it same key is used (ie, both properties fail to

hold)
↳ In general , never reuse cryptographic keys in different schemes ; instead, sample fresh, independent keys !

-

MAC needs to be computed over the entire ciphertext -

means first
←

Early version of ISO 19772 for AE did not MAC IV (CBC used for CPA -secure encryption) µ block lie,
"header

")
is malleable- RNCrypto in Apple iOS (for data encryption) also problematic (HMAC not applied to encryption IV) -

MA_Encrypt : Let (Encrypt. Verify) be a CPA- secure encryption scheme and (sign, Verify) be a secure MAC. We define

MAC- then- Encrypt to be the following scheme :

Encrypt
' ((ke

,
km)

,
m) : t ← Sign (km, m)

c ← Encrypt (KE , cm,-4)

output c

Decrypt
' ((KE

,
km) , Cc ,t)) : compute (mt)

← Decrypt (ke, c)
if Verify (km ,

m
,
t) -- I

, output m ,
else

, output I

Not generally secure ! SSL 3.0 (precursor to TLS) used randomized CBC t secure MAC

↳
Simple CCA attack on scheme (by exploiting padding in CBC encryption)

(POODLE attack on SSL 3.0 can decrypt all encrypted traffic using a CCA attack]

Padding is a common source of problems with MAC- then- Encrypt systems (see HWL for an example]

In the past, libraries provided separate encryption t MAC interfaces
-

common source of errors

↳ Good library design for crypto should minimize ways
for users to make errors

, net provide more flexibility

Today , there are standard block cipher modes of operation that provideauthenticatedencryption-One.atthe most widely used is GCM (Galois counter model. - standardized by NIST in 2007

GCMm_ode: follows encrypt- then
- MAC paradigm

-

CPA - secure encryption is nonce- based counter mode } Most commonly used in conjaction with AES

- MAC is a Carter -Wegman MAC (AES-GCM provides authenticated encryption)

Carter - Wegman MAC (" encrypted MAC
") :

very lightweight , randomized
MAC :

- Let H : KH X M→ 90,13" be a keyed hash function security relies on a mild assumption on the hash function

- Let F : KF t R → {0,13
"

be a PRF and can be realized unconditionally
The Carter - Wegman MAC is defined as follows :

↳
security relies only on PRF security

sign ((KH , KF) , m) : r E R Verify ((kn, km) , Cr
,
t)) : output 1 if FCKF

,

r) to t = H(kn
,
m)

t s- H (ku
,
m) to Fl KF

,
r) and 0 otherwise

output (r , t) (Very simple construction !
but tags are longer (need both a nonce and a PRF output)

GCyptio: encrypt message with AES in counter mode f
Galois Hash

✓ key derived from PRF

compute Carter-Wegman MAC on resulting message using GHASH as the underlying hash function
evaluation at O

"

and the block cipher as underlying PRF [GHASH operates on blocks of 128-bits

operations can be expressed as operations over

Typically , use ALIEN for authenticated encryption
- GF (2128) - Galoisfield with 2128 elements

| implemented in harder - very
fast !

+
GF(2128) is defined by the polynomial g (x)

= x'28 t X't X't X t 1
↳ elements are polynomials over Az with degree less than 128 (e.g. x

"'t X
"
t X't X t I]

(can be represented by 128 - bit string : each bit is coefficient of polynomial)
↳

can add elements (xor) and multiply them (as polynomials)
- implemented in hardware

[
(MED , me.] , mee])

(also used for evaluating the AES round function)

↳ GHASH (k, m) : = make t mask
"
t - - - t m le) k frayed;n.mn?aY;..e;a,mu%afivegoeffigientsot)

Oftentimes
, only part of the payload needs to be hidden

,
but still needs to be authenticated

↳ e.g. , sending packets over a network : desire confidentiality for packet body, but only integrity for packet headers (otherwise
,
cannot route !)

AEAD : authenticated encryption with associated data

↳
augment encryption scheme with additional plaintext input ; resulting ciphertext ensures integrity for associated data

,
but not confidentiality

(will not define formally here but follows straightforwardly from AE definitions)
↳
can construct directly via

"

encrypt - then- MAC
"
: namely, encrypt payload and MAC the ciphertext t associated data

↳ AES- GCM is an AEAD scheme

