
[
defined to be the identity element

f- cyclic groups
are commutative

Definition .
A
group G

is cyclic if there exists ager g
such that G = {go , g

'

.
. . .

, g
'"" }

.

Definition. For an element GE G , we write (g) ={ go.gl . . . . , g
'"" } to denote the set generated by g (which need not be the

entire set. The cardinality of Lg) is the order of g
lie,

the size of the
"

subgroup
" generated by g)

Example. Consider IF
= { 1,2, 3,4, 5,63 . In this case

,
↳ means that good = 1

(27 = { 1,2
,
4} ( 2 is not a generator of 25k ) cord (2) =3

(3) = { 1,3 , 2,6, 4,53 ( 3 is a generator of ZF ) cord (3) = 6

tagmeme . For a group
6
,
and

any
element

g
E G

,
cord (g) 1161 (the order of

g
is a divisor of 161)

.

↳ For 2p* , this means that ordlg) I p- I for all g
E G

CoroHary(FermaTheorem) : For all x C- Ipt , XP
"

= 1 (mod p)

Proof . 1215×1 = I { 1,2. . . . , p-ist =p - I f for integer ko

By Lagrange's Theorem, ord (x) / p - I so we can write p
- I = k . ord (x) and so XP

"
= (xordtx))

"
= 1k = 1 (mod p)

implication : suppose X E Ipt and we want to compute XY E 2p* for some large integer y
→
p

↳ we can compute this as

×y = ×Y (
mod P

- t)
(mod p)

since XP
"

= I (mod p)

↳ Specifically , the exponents operate modulo the other of the group
↳

Equivalently : group Ig> generated by g is isomorphic to the group (2g ,
t) where q = ord (g)

(g) I (2g , t)

g
" t> x

X times

Notation : g
"

denotes

g-g-i.gg-X
denotes (gx)

"

( inverse of group element gx ]

g×
"

denotes GH
")

where X
"

computed mod cord (g)
- need to make sure this inverse exists!

Compqpe¥ : In cryptography , the groups we typically work with will be large leg. , 2256 or 2
"" )

-

size of group element
(# bits) : ~ log 161 bits (256 bits / 2048 bits)

-

Group operations in Ipt : log p bits per group
element

addition of mod
p elements : O (log p)

multiplication of mod p
values : naively Oltogp)

karatsuba OClog
""

p
)

Schionhage - Strassen (GMP library) : O (log p log log p log log log p)
best algorithm 040g p log log p) [2019]

↳ not yet practical ( > 24096 bis to be faster . . . )

exponentiation : using repeated squaring
:

g , g
'

, g
"

, y
'
, . . . , GHS " , can implement using OG

og p
)

multiplications ( O (logs p) with naive multiplication]

↳ timeIspace trade
-offs with more precomputed values

division (inversion) : typically 0 (log
'

p) using Euclidean algorithm (can be improved)



Computationalp¥ : in the following, let ① be a finite cyclic group generated by g
with order q

-

Di¥m: sample x ⇐ 2g

given h=g×, compute X
-

Compi¥ffieHe¥D) : sample X.y
E Iq

given gx , g't , compute g×Y
-DecisionalDiffie-HeHman(DDH# : sample X.y ,

r
t
2g

distinguish between Lg, gx , g'd , g
't ) vs . Cg, gx, gud , gr )

Each of these problems translates to a corresponding computational assumption :

c-e.g.
, q = 2X

Definition
.

Let Gl = 4g) be a finite cyclic group of order q (where q is a function of the security parameter X)
The DDH assumption holds in ① if for all efficient adversaries A :

Pr lag Eap : A ( g, g
'

, god , g
'd ) -- I ) - Pr lag , reap : Alg ,gx.gY.gr/=17/--neg1lx)

The CDH assumption holds in 6 if for all efficient adversaries A:

Prexy Ekg : Algy's gut) = g
'd) -

- neglect
The discrete log assumption holds in G if for all efficient adversaries A :

Prix Ekg : Alg , gx) = x]
= negltx)

Certainly : if DDH holds in G ⇒ CDH holds in Gl ⇒ discrete log holds in G

& %?

Major open problem : does this hold?there are groups where CDH

believed to be hard
, but DDH is

Can we find a group
where discrete log is hard

but CDH is easy ?

easy

Instantiations : Discrete log in Ipt when p is 2048
-bits provides approximately 128- bits of security

↳ Best attack is General Number Field Sieve (GNFS) - runs in *me 20 ⇒ time

Much better than brute force - 2/08 P [cube root in exponent not ideal !

↳ Need to choose p carefully ← having small prime factors if we want to double security,
I leg., avoid cases where

p
- I is smooth) need to increase modulus by 8x .

'

r

for DDH applications , we usually set p
-
- 2g -11 where

group operations
all
← leg. , 16384- bit modulus for 256 bits

q is also a prime Cp is - a
" safe prime

") and work in the scale linearly (or worse) in of security)

subgroup of order q in Ipt ( Ipt has order p
- I = 2g) bit length of the modulus

Elliptic curve groups
: only require 256 -bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time 219% (g - algorithm - can discuss atgeenmeds,got ]
↳ Much faster than using Ipt : several standards

- NIST 12256
,
12384

,
12512 ) can discuss more at end of semester

-

Dan Bernstein's curves : curve 25519 (or in advanced crypto class)
↳

widely used for key - exchange t signatures on the web

When describing cryptographic constructions
,
we will work with an abstract group

(easier to work with, less details to worry about)



Diffie-Hellman key exchange
-

Let ① be a group of prime order p (and generator g)
- choice of group , generator,

and order fixed by standard

Alice Bote

X E Zp y
⇐ Ip

x

g-
gy
c-

compute g
't = Cg'd )

"

compute got =Cg×)
'd

↳
shared secret : got
#

But usually , we want a random bitting as the key , not random
group element

↳ Element GM has log p bits of entropy , so should be able to obtain a random bit-string with l s tog p bits

↳ Solution is to use a
"

randomness extractor
"

ctice to
↳ Information- theoretic constructions based on universal hashing / pairwise -independent hashing→

good pra
hash all components

(loses some bits of entropy) binds the key to
↳ Use a

" random oracle
"
or an

"

ideal hash function
" (Hengist : SHA-256 (g, g's g

'd
, 8×9) ) /

"

ttheangytipne )
(very efficient in practice)
↳

Amenity : l . Rely on HashDH assumption (
g , g

"

, gut , Hlg, gx.gs, gas) (g , g
"

, y
'
,
r)

4

where H : G → {0,13
"

and rt so , 13h
4

2 .
Model H as ideal hash function H : ① → {0,13

" (i.e.
,
random oracle) and

rely on CDH in IG ( inability to evaluate H on god ⇒ output is random string
]

Publication : Encryption scheme where encryption is public (does not require sharedsec.ve#)
-

Setup (H) → Cpk , sk) [ generates a publicprivate key - pair
- also called keyGen )

-

Encrypt Cpk, m) → c

-

Decrypt (sk, c) → m

Everyone can publish a public key ( in a directory)
↳ Can encrypt to anyone without exchanging keys (recipient can be offline)

correctness : Fm E M : Pr [ Cpk , Sk) ← Setup( 17) : Decrypt Csk , Encrypt Cpk, m))
= m ) = 1

Security : semantic security from secret-key setting , but adversary also gets public key
BE for]

adversary challenged
t

ok
(Pk , Sk) ← Setup (za)

I
Mo

,
Mr E M
-

t
I

b' C- {0,13

SSAdv IA
, TIPKE]

= / Pr EA outputs 1 / b -- o ] - Pr EA outputs 1 I b = I ]/


