
Diffie-Hellman key - exchange is an anonymous key - exchange protocol : neither side knows whee they are talking to

↳ vulnerable to a
"

man -in- the- middle
"

attack

Alice Bob Alice Eve Bob
X -

Za
9- runs 9-

÷
'÷÷÷ .

.
.
f÷÷÷÷÷÷÷£ Y f f j Bob and Alice +Bob

god got xzz
have ne idea !

g

What we require : auttd key - exchange (not anonymous) and relies on a root of trust leg. , a certificate authority)
↳ On the web

,
one of the parties

will authenticate themself by presenting a certificate

To build authenticated key - exchange, we require more ingredients
- namely , an integrity mechanism leg. , a way to bind a

message to a sender - a " public-key MAC
"
or digitalsignature-t.NL will revisit when discussing the TLS protocol

Digital signature scheme : consists of three algorithms :
-

Setup (I
') → (vk.sk) : Outputs a verification key vk and a signing key Sk

-

Sign Csk , m) → o : Takes the signing lay sk and a message m and outputs a signature o
-

Vdfy (vk.im ,
o)→ 0/1 : Takes the articular lay vk

,
a message m ,

and a signature on
,
and outputs a bit 0/1

Two requirements :
-

Correctness : For all messages me M ,
(vk.sk)← KeyGen (17 , then

Pr#fylvk, m , sign(skim)) = I] = 1 . [Honestly -gated signatures atways verify]
-

Untorgeabihty : Very similar to MAC security . For lat official adversaries A, SigAdv EAT = PREW - I] - neglia), where
W is the output of the following experiment :

given,once,¥>

O ← Sign (skim) f
f-c- -

(m*
,
0*1

Let Mi
.
. . .

, ma be the signing queries the adversary submits to the challenger Then, W = I if and only if :

Verify (uk, m
't
,
Ot) = I and m* I { me. . . . , ma}

Adversary cannot produce a valid signature on a nee message .

Exact analog of a MAC (slightly weaker unforgeability : require adversary to not be able to forge signature on new message)
↳ MAC security required that no forgery is possible on any message [needed for authenticated

encryption) digital gsigaygaotgyehmpelliptiggaarve.ly
standards (widely used
on the web - e.g., TLS)

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)
↳ But construction not intuitive until we see zero knowledge proofs (later this semester)
↳ We will first construct from RSA (trapdoor permutations)

We will now introduce some facts on composite- order groups :

Let N = pq be a product of two primes p , q. Then
, IN

= {Oil , - -
-

i
N - 13 is the additive group of integers

modulo N
.
Let 2nF be the set of integers that are invertible (under multiplication) modulo N

.

X E Int if and only if god Cx , N)
-

- 1

Since N -- pg and
p, q are prime, god(x, N) = 1 unless X is a multiple of p or q:

12ft = N - p
-

q t 1
=

pg
-

p
-

qt I
= (p

- Dlg- D = 91N)
←
Euler's phi function

Recall Lagrange's Theorem : (Euler's totient function)
for all X E 2N* : x"

N)
= 1 (mod N) (called Euler's theorem

,
but special case of Lagrange's theorem)

←
important :

"

ring of exponents
"

operate modulo GCN) = (p- 1) Cq- 17

Hard problems in composite - order groups
:

-⇐toeing : given N'- pg
where

p
and q are sampled from a suitable distribution over primes, output p, q

-

C-omputi~root.si Sample random X EEE .
Given y=X3(mod N) , compute X (mod N)

.

↳ This problem is easy in Ipt (when 3 t
p
- D

. Namely , compute 3
"
(mod p

- D
, say using Euclid's algorithm , and

then compute y
'
"

(mod
p)

= (x35
'

(mod p)
= X (mod .pl .

↳
Why does this procedure not work in Eni

.

Above procedure relies on computing 3
"
(mod / INT) =3

" (mod 9cm)

But we do not know 91N) and computing 91N) isashardas factoring N . In particular, if we
know N and 91N)

,
then we can write

N -- PG [both relations hold over the integers){
een) -- Cp-D Coo- D

and solve this system of equations over the integers (and recover p, g)

Hardness of computing cube roots is the basis of the RSAassumpti :
distribution over prime numbers .

BSA*pti : Take p, q
← PrimesH and set N -- pg. Then ,

for all efficient adversaries A
,

PRIX# Ent ; y ← ACN , x) : y
'
= x) =

negIG)
←

more generally, can replace 3 with
any e where gcdle.HN/=1[

Hardness of RSA relies on 91N) being hard to compute , and thus
,
on hardness of factoring

(Reverse direction factoring RSA is net known)

Hardness of factoring / RSA assumption :
- Best attack based on general number field sieve (GNFS) - runs in time n 28(FST)

(same algorithm used to break discrete log over 2p*)

,
y

large key -sizes and computational
-

For 112- bits of security . Use RSA -2048 (N is product of two 1024 - bit primes)
cost ⇒ ECC generally

- preferred over RSA
128 - bits of security, use RSA -3072

-

Both prime factors should have similar bit- length (ECM algorithm factors in time that scales with smaller factor)

RSA problem gives an instantiation of more general notion called a trapdoorpermutation :

FRSA : ZN* → zn*

Frsa (x) : = Xe (mod N) where god (N , e) = 1
Given 41N)

, we can compute
D= E' (mod 91N))

.
Observe that given d, we can invert FRSA :

FISA (x) : = xd (mod N)
.

Then
,
for all X E 2£ :

Fria (Frsa (x)) = Held = xed 'mod "N"
= x
'
= x (mod N)

,

trapdoorpermutation: A trapdoor permutation GDP) on a domain X consists of three algorithms !
-Setup (17) → (pp, td)

: Outputs public parameters pp
and a trapdoor td

- F (pp , X)
→

y : on input the public parameters pp and input
X
, outputs y

C- X

-F-' Hd, g) → x : On input the trapdoor td and input y , output X E X

Requirements :
- Corsg : for all pp output by setup :

- F Cpp, .) implements a permutation on X
.

-

F
" Ctd

,
F (pp, x)) = X for all X E X.

-

Security : Flpp, a) is a one-way
function (to an adversary who does not see the trapdoor)

Naive approach (common
" textbook

"

approach) to build signatures :

Let (FF") be a trapdoor permutation
- Verification key will be pp } to sign a message m , compute o

← F
-' (td

,
m)

-

signing key will be td to verify a signature ,
check m

E F (pp, o)
Correct because :

F (pp , o)
= Hpp, F

- ' Ctd , m)) = m

secure because F-' is hard to compute without trapdoor (signing key) FACIE.'

↳ This is not true ! Security of TDP just says that F is one-way .
One- wayness just says function is hard

to invert on a randomly input . But in the case of signatures , the imessage is the input. This is not only
not random, but in fact , adversarially chosen !

↳ Very easy to attack
.

Consider the O-
query adversary :

Given verification key uk -- pp, compute F (pp, o) for any
O E X

Output m
-

- F Cpp, o) and o

↳ By construction , o is a valid signature on the message on
,
and the adversary succeeds

with advantage 1 .
Textbook RSA signatures : [NEVER USE THIS !]

Setup CH) : Sample (N , e , d) where N -- pg and ed = 1 (mod 91N))

=D Output Vk = (Mel and sk -- d } Looks tempting (and simple) . . .

Sign (Sk, m) : Output o ← Md (mod N) but totallybroken !
"e

Verify (vk , m , o) : Output 1 if Oe = m (mod N)

