
n

signatures from trapdoor permutations (the full domain hash) :
In order to appeal to security of TDP

, we need that the argument to F-
'

(td ,
.) to be

randomidea: hash the message first and sign the hash value (often called " hash- and- sign
")

↳ Anette: Allows signing long messages (much larger than domain size of TDF)

FDHtr⇒ :

-Setup (17) : sample (
pp,
td) ← Setup CH) for the TDP and output Vk :

pp , sk
= td

-

sign Csk, m) : Output o ← F-
' (td

,
Html)

-

Verify (vk.im ,
o) : Output 1 if F (pp, o)

= Hlm) and 0 otherwise

theorem
.
If F is a trapdoor permutation and H is modeled as an function lie.

,
random oracle)

,
then the

full domain hash signature scheme defined above is secure
.

PeofItin: To forge a signature on a message m
,
need to compute

↳
function that behaves like a truly random function

F-
'
Ctd

,
Html) where Hlm) is uniformly in domain (does not exist but functions like SHA-256 or

of the permutation
-

security follows from TDP
.

SHA-3 believed to be " close enough
")

Canet : still need to simulate signing queries
→ relies on

"

programming
"

the random oracle (see office hours) some (partial) attacks can

exploit very small public exponent
(e -- 3)

Recap : RSA- FDH signatures : ly
v

setup CIT) : sample modulus N
,
e
,
d such that ed = I (mod 41N)) - typically e = 3 or e = 65537

Output vk
-

- CN
,
e) and sk = (N

,
d)

Sign (sk , m) : o ← Hlm)d (Here , we are assuming that H
maps into ZN

't]

Verify (vk.im , o) : output 1 if H (m) = o
'
and 0 otherwise

standard : PKCSI vi.5 (typically used for signing certificates)
↳ Standard cryptographic hash functions hash into a 256- bit space (e.g.. SHA -256) , but FDH requires futldomain
↳ PKG I VI.5 is a way to pad hashed message before signing:

1-10001 FF FF - ' ' FF FF 00 DI H (m) /1-
--t ↳

message hash (e.g, computed using SHA -256)
16 bits pad

digest info

e.g., which hash function(was used)

↳

Padding important to protect against chosen message attacks (e.g. , preprocess to find messages mi , Mz ,
m, where H (m) = Hlmz) - Hhmi)

(but this is net a full- domain hash and cannot prove security under RSA
- can make stronger assumption . . .)

Also possible to use RSA to build PRE :

"

Textbook RSA
"

(How NOI to encrypt)
: consider the following candidate of a PKE scheme from RSA:

-

Setup (17) : sample (N
, e.d) where N -- pg and ed = 1 (mod 61N)) . Output pk = IN , e) and ski (N , d)

-

Encrypt Cpk, m) : Output c
← me

-

Decrypt Csk, et) : Output m
← cd }

↳""

Sind! (m e)D= med = m
'
= m (mod N)

Correctness follows from correctness of TDP
.

How about security ? NI. I. Security of TDP says that inverting random element should be difficult
=

↳ Does not apply if messages chosen adverbially leg. , semantic security definition)
↳
Does not say anything about hiding pre:mage (e.g., F Cpp, x) can leak information about X so long
as leakage is not sufficient to fully recover X - this is a weaker propay than full indistinguishability)

2. This scheme is deterministic : cannot be semantically secure !

NEVER use textbook RSA !
=

To use RSA / TDPS to construct a PRE scheme
,
we will use a similar strategy as in the FDH signature construction :

-

Setup (17) : sample (pp, td) ← Setup CIT) for the TDP scheme and output pk = pp
and sk= td

-

Encrypt (pk, m) : Sample X
E X from domain of TDP Scheme is randomized

Let k ← H (x) where H : X → Ko is an (ideal) hash function and K is the key
-

space for an

symmetric authenticated encryption scheme

compute y
← Flpp, X) and et

'
← Erica (K , m)

Output (y ,
et)

-

Decrypt (sk , et
'
= Cy , Ctl) : compute X ← F-

' (td
, y) , k ← H (x)

,
and output m ← Deca, (K , et

')

This is an example of hybrid encryption or KEM :

y is
used to encapsulate the key and Ct

'

is an encryption under
ko

theorem
.

If F is a trapdoor permutation and H is modeled as an ideal hash function, then the above encryption
scheme

is semantically secure . [In fact, this scheme is CCA - secure in the random oracle model]

Prootintuition. Given a ciphertext ly , Ct
') and public key pk -- pp :

-

Adversary cannot compute X from y (by security of TDP - since X is uniform)
-

Adversary cannot evaluate H on X , so k is uniformly random and hidden from adversary (if His ideal . . .)
- Semantic security follows from semantic security of symmetric encryption scheme .

RSAinstant-iat.no.
-

setup (17) : sample CN
,e. d) where N- pg and ed= I Cmod UND

. Output pk
-

- CN
, e) , ski (N ,d)

-

Encrypt Cpk , m) : sample X
⇐ IF and compute y

← Xe (mod N)

compute k← Hlx) and compute of ← Enga, (k ,

'

m)
.

} Output (Y, Ct')
-

Decrypt Csk , et) : compute X ← yd (mod N) , k ← HCK)
,

and output m ← Dec# (k , at
')
.

Inprae : Most widely- used standard for RSA encryption is PKCSI (by RSA labs)

↳ Has shorter ciphertext if we are encrypting a single IN element (no need for KEM t symmetric component]

(helpful if PKE just used to encrypt short token or metadata)

teach :

suppose N is 2048 bits and we want to encrypt 256- bit messages
↳

we will first apply a randomized padding to m to obtain a 2048 - bit padded message

PKCSI padding:
g-(mode 2) 00-02
- -

16 bits s bits where sat

it
- bits long

Encryption : compute mpad
← PKCS (m) and set c ← mpead Lie , directly apply RSA trapdoor permutationssayle padded)

Decryption : Compute Mpad
← Cd and recover m from mpad

In SSL v 3.0 : during the handshake , server decrypts client's message and checks if resulting mpad is well-formed

lie, has v.alidpkl.SI padding) and rejects if not

↳ scheme is vulnerable to a chosen - ciphertext attack !

↳ allows adversary to eavesdrop on connection

Devastating attack on SSL 3.0 and very hard to fix : need to change both servers t clients !

↳
ILI i fix is to set ME 2nF if decryption ever fails and proceed normally (never alert

client if

padding is malformed) - setup fails at a later point in time, but hopefully no critical information is leaked..-

Taay : PKCSI is not CCA - secure which is very problematic for key exchange
↳ Absence of security proof should always be troubling . . .

Newstedadd: Optimal Asymmetric Encryption Padding (OAEP) [19943 } Standardized in PKCSI
↳ Can be shown to be CCA - secure in random oracle model version 2-O

