
TLS 1.3 and authenticated key - exchange protocols on the Internet typically provide one-sided authentication (i.e.
,
client learns id of

the server, but not vice versa)

Question : how does the client authenticate to the server (without providing a certificate)
↳

e-g. , how does client login to a web service?

client and server assumed to have e.g, client has a password and server

Typicalsetting : some shared state / has an HMAC of the password)
(sk) (uk)

client server

-

AKE protocol } Enfant replace this with anonymous key exchange
c-

client learns
. -

.

↳ becomes vulnerable to a man-in-the-middle attack
server's identity

- - - - - - - - - -

identification protocol
c-

Treatmotels : Adversary's goal is to authenticate to server

-Dictated : adversary only sees vko and needs to authenticate

(e.g. , physical analogy : door look
-

adversary can observe the look
,
does not see the key Sk)

-

Eavesdroppingattack: adversary gets to observe multiple interactions between honest client and the server

(e.g. , physical analogy : wireless car key
- adversary observes communication between car key and car)

- Activate : adversary can impersonate the server and interact with the honest client

leg . , physical analogy : fake ATM in the mall - honest clients interact directly with the adversary)

simple (insecure) password- based protocol :

client Csk : pwd] serve fuk : pwd]
and
I

t

accept if vk
-

- pwd

Not secure even against direct attacks ! Adversary who learns vk can authenticate as the client

%ad.ve?arjfe..whopasbwre.aak?
into server)

NEVER STORE PASSWORDS IN THE CLEAR !

Slightlybetto: hash the passwords before storing server maintains mappings
Alice ↳ HlpwdAlice)
Bob F H(podBob)

where H is a collision- resistant hash function

client Esk : pwd] server fuk : Hlpwdl]
owd
I

t
accept if

vk = Hlpwdl

If passwords have high entropy , then hard to recover pwd from Hlpwd) (by one-wayness of H]

↳ But not true in practice . ..

Users often choose weak passwords (e-g. , 123456, password , 123456789, - . .)
↳ with a dictionary of 360 million entries

,
can cover about 25% of user passwords) Based on password hashes that have

(3% choose 123456) been leaked from compromised
databases

(10% choose
among top 25 common passwords)

simple hashing vulnerable to
"

offline dictionary attack
"

:

adversary computes table (pwd , Hlpwd)) for common passwords - completely offline

given Hlpwd), can now invert with a single lookup if pwd is contained in the database

for LinkedIn breach in 2012, attacker stole password file with ~ 6 million passwords
(all passwords hashed using single iteration of unsalted SHA-I) → 90% of passwords recovered in - 6 days !

Problem: One-time precomputation (computing the lookup table) can be reused to compromise many passwords
Overall cost of attack : O (m t n) where m is the dictionary size and n is the number of passwords to attak

Defense#I: Edt passwords before hashing : namely when storing password pwd , sample salt £ 90,15 and store

(salt
, H(salt 11 pwd)) on the server T

typically , n 764Ncte : Salt is a public value (needed for verification)

offline dictionary attack no longer effective since every salt value induces different set of hash values

Overall cost of dictionary attack : O (Mn)
- need to re-hash dictionary for every salt

D¥#2 : Use a sloe hash function [SHA- I is very fast
- enables fast brute-force search]

- PBKDFL (password -based key- derivation function) : iterate a cryptographic hash function many
times :

(or bcrypt) PBKDFL (pwd , salt) : H (HC - - - H (salt Hpwd) - - -))

(
honest user only needs to evaluate
-

hash function once per authentication;
can use 100,000 or

4009000 iterations of SHA -256 adversary evaluates many times

Drawback : custom hardware can evaluate SHA- 256 vey fast
-

script (more recent : Argon2i) : slow hash function that needs lots of memoriae) to evaluate

↳ custom hardware do not provide substantial savings (limiting factor is Spee, not compute)

can also use a keyed hash function leg, HMAC with key stored in HSM)
↳

ensures adversary who does not know key cannot brute force atoll !

Bestpra : Always salt passwords
Always use a slow hash function leg, PBKDFL, crypt) or keyed hash function or both !

raw MDS hash - not secure! Facebook password onion
'
III!#on /

(circa 2014)

(key on remelt service) v

layers gradually added over time to

slow hash function achieve better security
and probably to avoid password(

rehashing
)

Password - based protocol not secure against eavesdropping adversary
(adversary sees rko and transcript of multiple interactions between honest prover

t honest verifier)

One- time passwords (secured tokens
, Google authenticator, Duo)

(OTP)

Cystine : consider setting where verification key VK is secret leg., server has a secret)
-

client and server have a shared PRF key ko and a counter (initialized to O) :

client (k
,
c) server (k , c)

l l
c
, y ← FCK , c)

t# check that y
'
= FCK

,
d) and c

'
> c (no replaying) } car key(← Ct 1

authentication

concretely: can intepret if successful
, update c← c

'

output as 6- digit
number

-

tSA#I : stateful token (counter incremented by pressing
button on token)

↳ State is cumbersome - need to maintain consistency between client (server
-

google.Aathentie.at# : time- based OTP : counter replaced by current time window leg ., 30- second window)

If PRF is secure
⇒ above protocol secure against eavesdroppers (but requires server secrets)

↳ can be problematic : RSA breached

Ettore : No server -side secrets (S1key) [
"

under composition
"

in 2011 and searID tokens compromised
- Relies on a hash function (should be one- way) and used to compromise defense

- Secret key is random input x and counter n ; contractor Lockheed Martin

Verification key is H
"'
(x) = H (HC . . . HG) - -

-))
-

no evaluations of H

pwdn pwdn- I pwdz pwd1
f f f f

to verify y : check Hly)! Vk } attacker has to invert H

×•-¥%,→•
→ - - - •

Ty: yoga, µ, =p,
if successful , update vk ← y

in order to authenticate

HMG) H'""(x)

- Verification key can be public (credential is preimage
of Uk)

↳ Can support found number of authentications (at most n) - need to update key after n logins
↳ Output needs to be large (n 80 bits or 128 bits) since password is the input loutput to the hash function

-

Naively , client has to evaluate H
many times

per authentication (n Oln) times)

↳ Can reduce to 0Clog n) hash evaluations in an amortized sense by storing O (log n) entries along the hash chain

[
no man-in-the-middle

Thus far
, only considered passive adversaries

,
but in reality, adversaries can be malicious protection

-

Adversary can impersonate server leg ., phishing) and then try to authenticate as client (but cannot interact with client during auth.)
- All protocols thus far are vulnerable fallacy

,geonsisadtuegfaydient sending
token that server checks

,
which can be extracted by)

- For active security, we use chalking

Signature- based challenge - response
-

Server stores a verification key vk for digital signature scheme

-

client holds signing key Sk

f
random message
m

client Csk) server (vk)
m EM
e-

or ← Sign Csk, m)
f-
v

check that Verify fuk, m, o) = I

Server asks client to sign a random message
↳ Client's signature indicates proof of possession of Sk associated with vk

↳ Active adversary that interacts with the client before interacting with the prover cannot forge signatures
Provides active security but signatures are long 4384 bits)

