
Yao's Protocol (LPC) :

key ingredient :
"

garbling
"

protocol (garbled circuits)

truth table :

Dani ana

Xz
⇒ O l O

i 9 I 9

1) Associate a pair of keys (kilo
'

,
k!") with each wire is in the circuit

co)

÷" AND-93 ki
"

k!b) : key associated with wire valve b
ki Kj"

ki" for wire i [symmetric encryption key]

2) Prepare ga¥truthtabe for the gate
↳ Replace each entry of truth table with corresponding key
↳ Encrypt output key with each of the input keys

O ki" Hoo← Encrypt (ki
"

, Encrypt (ki? KE
'))

O

,

' ! !÷÷? =>
Cta← Encrypt (Kio! Encrypt (ki

"

,
ki"))) randomly shuffle ciphertext

/ ki" cho← Encrypt (ki
"

, Encrypt (ki? k
,

"'))

/ ki" oh, ← Encrypt (ki's, Encrypt (ke
"'
,
ki"))

3) Construct decoding table for output values

Kj" t O

} Alternatively, can just encrypt output values instead of

Kj" m 1 keys for output wires

General garbling transformation : construct garbled table for each gate in the circuit
, prepare decoding table for each output wire in the

circuit

Evaluating a garbled circuit :

/÷yyyi III.
it:i÷÷7÷::'t. ME;

" ITEM::L:c:
ctoi
'
etii' -7k ki

"

Hot" ctio"
-

co,#Ifip Kj
"#

← decode using decoding table
Ks -

- ctoo" olio"
-

Invariant : given keys for input wires of a gate, can derive key corresponding to output wire
⇒ enables gate-by- gate evaluation of garbled circuit

↳
Reg : Evaluator needs to obtain keys (labels) for its inputs (but without revealing which set of labels it requested)

ÉÉ+t :
circuit C

Alice (garbles)
←

Bob (evaluator)

€riati¥ ¥iate€ty
1. Prepare garbled circuit I Prepare 0T queries for

tr C bits of
y

<OTforlabdsfory_
2. Prepare 0T responsa

for Bob's inputs . Messages

correspond to wire labels.

OT responses for

labels of Bob's input
=

garbledciruitlabds-or-N.ie#putx
2. Evaluate garbled circuit
to learn ((× , y)

: Follows by correctness of 0T and of the garbling construction

Security : Relies on security of 0T and garbling transformation
f-

relies on 0T simulator to simulate 0T responses

↳ Simulate Bob's view given output of computation (using the garbled circuit simulator)
↳ simulate Alice's view using 0T simulator

Variants : 1. If both parties should learn output , Bob can send it to Alice .

2. Can extend to malicious security (need additional rounds and some modifications) .

Many optimizations possible :

1. free ✗OR - no need to send garbled tables for ✗or gates in circuit

2- half gates
- only need two ciphertext for each AND gate (no, y,

} AND and ✗OR are universal
↳ standard basis for garbled circuits

3. no need to double encrypt
-

can
"

encrypt
"

once using key derived from input keys

Final major topic in this course : post
-quantum cryptography and the next generation of cryptography

We will not have time to cover quantum computing in this course . We will just state the implications :

GrÉgrithy : Given black- box access to a function f :[N] → {0,13
,
Grover's algorithm finds an ✗ C- IN] such that

f- G) = 1 by making 0 (TN) queries to f.
"

Searching an unsorted database of size N in time 0 (TN)
.

"

Implications.in#ptography: Consider a one-way
function over a 128 - bit domain . The task of inverting a one-way function is to

find ✗ C- {0,13
'"

such that f-G) =y for some fixed target valve f. Exhaustive search would take

time 22128 on a classical computer , but using Grover's algorithm, can perform in time = Ñ2 = 26.4

⇒ For symmetric cryptography, need to doubt key-sizes to maintain same level of security (unless there are new quantum
attacks on the underlying construction itself .

⇒ Use AES-256 instead of AES-128 (n¥ a significant change !)

f- though requires large space
Similar algorithm can be applied to obtain a quantum collision- finding algorithm that runs in time ÑÑ where N is the

size of the domain (
compare to

TN for the best classic algorithm)
↳ Instead of using SHA -256

, use
SHA -384 (n±t a significant change)

Maintaeaway : symmetric cryptography mostly unaffected by quantum computers
~

generally just require a modest increase in key size
↳ e.g. , symmetric encryption, MAGS, authenticated encryption

story more complicated for public-key primitives :
-

Simon's algorithm and Shor's algorithm provide polynomial-time algorithms for solving discrete log (in any group with an efficiently -

computable group operation
and for factoring

-

Both algorithms rek on period finding (and more broadly , on solving the hidden subgroup problem)

Thus , if large scale quantum computers come online, we will need new cryptographic assumptions for our public-key primitives
↳ All the algebraic assumptions we have considered so far (e.g. , discrete log , factoring, pairings) are broken

IÉitiithist€? - Lots of
progress

in building quantum computers recently by both academia and industry leg, see initiatives

by Google , IBM ,
etc

.
)

-

To run Shor's algorithm to factor a 2048 - bit RSA modulus
,
estimated to need a quantum computer with

= 10000 logical qubits (analog of a bit in classical computers)

↳ With
quantum error correction

,
this requires 7 10 million physical qubits to realize

↳
Edgy : machines with 50-60 physical qubits , so still very far from being able to run Shor's

algorithm
-

Optimistic estimate : At least 20-30 years away (and some say never . . .)

