
Quick recap from last time: PRG is function G i { 0113
"
→ 10,13

"

that takes short seed and stretches it to long random-looking

string

PRG ⇒ stream cipher (use PRG to obtain random string that looks like a OTP) :

Encrypt (k,m) : Cock) Ot m

Decrypt (k, c) : GCK) to c
←
replaces the OTP

Why is this secure? To
any efficient adversary , G(K) looks like uniform random string

-

Idea: real scheme will encrypt as GCK) Ot m 2 PRG security ⇒ efficient adversary cannot tell

Secretly .. . we now replace GCK) with t £50,13" and set ciphertext to t ① rn we did this
, since otherwise

,
we break

PRG security !

Fermat : if there exists A that can distinguish G(k) to m from t Ot m
,
then there is B that can distinguish GCK) from t

(breaking PRG security)Redon: construct B from A :

be {on3 ← assumption
: two

'
- wit non-negligible

Algorithm

)
bthhoschallengerf Let Wo

'
= Pr EA outputs 1 given Gadot m]

Algorithm A t ← Gcs)
wi = Pr [A outputs 1 given t Ot m]

T¥±e ⇐ / " " """" Then

c. outputs . I b
-
- o]

←
b' e-Eoi# - = Pr EA outputs 1 given Gls)

Ot m]

b' C- foil)
= Wo'

Pr (B outputs 1 / b = I]
= Pr (A output, I given t Q m]
= w

.

'

PRGADREB
, G) =/ Wo

'
-will is non- negligible

conclusion : efficient adversary cannot tell if it sees Gtk) Ot m or t Ot m

↳ but if ciphertext is t Ot m
,
this is a OTP encryption, so m perfectly hidden

thus
,
no efficient adversary can distinguish Mo ④ GCK) from M

,
Ot Gtk) and semantic security holds

Oyston : Do PRGS exist ?

Unfortunately , we do not know !

n > X
T

claim: If PRGS with non- trivial stretch exist
,
then Pt NP .

Pref. Suppose G : { 0,13
"
→ {0,13

"

is a secure PRG
. Consider the following decision

'

problem :

on input t E {0,13? does there exist s E fo ,
131 such that t = Gcs)

This problem is in NP (in particular, s is the witness)
.

If G is secure , then no polynomial -time algorithm can solve

this problem (if there was a polynomial - time algorithm for this problem ,
then it breaks PRF security with

advantage l -÷ > I since n > X)
.

Thus
, Pt NP.

In fact
,
there cannot even be a probabilistic polynomial - time algorithm that solves this problem with probability better than

It E for non- negligible E > O
. This means that there is no BPP algorithm that breaks PRG security

:

if PRGS exist , then NPH BPP
←

bounded error probabilistic polynomial time
"

randomized algorithms that solves problem with bounded (constant) error
"

Thus, proving existence of PRG requires resolving long - standing open questions in complexity theory !
⇒

Cryptography : we will assume that certain problems are hard and base constructions of (hopefully small) number of

conjectures .
- Hardness assumptions can be that certain mathematical problems are intractable leg. , factoring)
↳ typically for public- key cryptography (2nd half of this course)

- Hardness assumptions can be that certain constructions are secure (e.g. ,
"

AES is a secure block cipher
")

↳

typically for symmetric cryptography
↳

constructions are more ad hoc
, rely on heuristics, but very fast in practice

Examples of stream ciphers (PRGs) : designed to be
very

fast (oftentimes with hardware support)
- Linear congruentat generator (e.g., randi) function in C)

rit , = a ri t b (mod m) plementatiou : output is a

✓
typical in

few bits of ro
,
r
, , rz (full

a
, b , m are public constants) very simple, easy to implement value of ro

, ri , ra ,. . . . never
revealed)

ro is the initial seed (especially when m is a power
of 2)
(

or Lrilw)

↳ need to choose so outputs have long period
NII a cryptographic PRG : NEVER USE randC) To GENERATE CRYPTOGRAPHIC KEYS E

-

Given full outputs, outputs fully predictable (if enough bits of state revealed
, can brute force unknown bits)

-

Even given partial outputs leg .. least significant few bits of output) and having secret a. b, m , can still

be broken (linear functions are not secure ! see Boneh -Shoup Ch
.
3. 7.1 and related papers)

- Often good enough for non -cryptographic applications (e.g, statistical simulation)

-

Linear feedback shift registers (LFSRs)

register state [
initial state of LFSR

#
determined by the seed

0/1/0/0 10/1 11 to → PRG output-

f-Very friendly for hardware implementations|→ (t#aps (fixed for the construction)
"

linear feedback
"

[
linear function of register state (addition modulo 2)

Eachutioe : rightmost bit is output by LFSR

bits at tap positions are xored and shifted in from the left

1 clock cycle = 1 output bit - very simple
and fast !

By itself , LFSR is totally broken : after observing n- bits of output , the entire state of the LFSR is known and

subsequent bits are completely predictable !

Proposal : Use multiple LFSRS and combine in some non-linear way :

Example: CSS (content scrambling system) for DVD encryption [1996]

IT
8 bits

↳ actual CSS encryption has a few differences
,
but

17 - bit LFSR -1 -

Effi ,#z) - pay
the core attack is unaffected

I 1-1
×tmod2S4_→ 8 bits

25 - bit LFSR -9
40-bit key - 8 bits C : carry bit from previous operation (initially 0)

(needed to comply with export control restrictions)

- Brute- force attack : guess the seed
(n 2
"
time)

-

Can do much better with more clever strategy
↳ G¥e:- if we know a few bytes of output of the stream cipher and the output of the

17-bit LFSR
,
can subtract to obtain output of 25-bit LFSR

- brute force the seed of the 17- bit LFSR
,
each guess

induces a state for the 25-bit LFSR

- check if output matches or not

↳ Attack now runs in n 2lb time
-

By 1999
, full key- recovery attack on can recover key from DVD in just

n 18 seconds on 450MHz processor
(totally broken !]

Otherexampks : GSM encryption (A-5/1,2 Stream ciphers for encrypting GSM cell phone traffic)| ↳
Xor outputs of 3 LFSRS

[
Snowden documents : NSA can process encrypted

"" ""

%)
↳ +""d " the

" ""w
↳ "
S" F

""" b" """" ""& "Timed "d """" to"
A""

Never rely on security by obscurity !

Bluetooth EO stream cipher uses a design based on 4 LFSRS in conjunction with a 2-bit finite state

(1987)
machine - also not secure !

-

RC't stream cipher (widely used - SSLITLS protocol, 802.1lb)

/-1
Numerous problems :

E-bit initial PRG seed -

Bias in initial output
: Pr (second byte = o]

= ITS > ¥56
t

f-
↳ When

using
RC4

,
recommendation is to ignore first 256

2048 -bit internal state-1 bytes due to potential bias

J F ↳ Correlations in output : probability of seeing (0,0) in output
I - byte per

round is zstzt 2¥63 ? ¥62
↳ Given outputs of Rot with related keys leg . , keys sharing

common suffix! , possible to recover keys after seeing
few blocks of output
↳ Can be

very problematic on weak devices (who may not

have good sources of entropy)
-

Modern stream ciphers (eSTREAM project : 2004 - 2008)
-

Salsa20 12005) → Chacha (2008)

↳ core design maps 256- bit key , 64-bit nonce , 64-bit counter onto a 512-bit output

In a

/ (Design is more complex:
- relies on a sequenceenables using same

allows render access into
of rounds

key (and different monas) the stream
- each round consists

of 32- bit additions
,
Kors
,to encrypt multiple messages and bit - shifts

(will discuss later)

↳
very fast even in software (4-14 CPU cycles / output byte)

- used to encrypt TLS traffic between Android and Google
services

Recall : the one-time pad is not reusable (i.e, the two-time pad is totally broken)
NEVER REUSE THE KEY TO A STREAM CIPHER §

But wait. . . we "proved
"

that a stream cipher was secure
,
and yet , there is an attack ?

Recall security game
: boo ,B Ibsen : adversary only sees one ciphertext

adversary challenged
!

key is only used once

x KEK
÷ Cb← Encrypt (k ,Mb)

⇒ Security in this model says nothing
I about multiple messages (cipher-textsv

b' C- foil3

Problems : If we want security with multiple ciphertext, we need a different or stronger definition (CPA security)

