CS 395T: Topics in Cryptography Spring 2022

Problem Set 1

Due: March 11, 2022 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:
https://www.cs.utexas.edu/ dwuéd/courses/sp22/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general approach with other students, but you may not share written
documents. You should not search online for solutions to these problems. If you do consult external sources, you
must cite them in your submission. You must include the names of all of your collaborators with your submission.
Refer to the official course policies for the full details.

Instructions. We will add problems to the problem set throughout the semester (roughly 1 problem each week),
with the last problem added at least a week in advance of the due date. All problems are weighted equally. You
should submit solutions to at least 70% of the problems (rounded down). If you submit solutions to more than 70%
of the problems, we will drop the lowest-scoring problems when computing your final homework score.

Problem 1: SIS and Inhomogeneous SIS. Let 1, g, B be lattice parameters where g is prime and m, f = poly(n).
Show that the SIS, 41,4, assumption implies the ISIS,, ,, 5 g assumption, where § = /1 + (f')2. You may treat the
lattice dimension 7 as the security parameter. Both SIS and ISIS are defined with respect to the ¢, norm.

Alternatively, show that hardness of ISIS;, ;,, 4,5 implies hardness of SIS, 11,4,

For this problem, you only need to show one of the above statements. The second statement is more interesting,
but a bit more challenging to prove.

Problem 2: GPV Signatures. Recall the general structure of the Gentry-Peikert-Vaikuntanathan signature scheme
from lecture:

¢ The verification key is a random matrix A 2 Zg*™ and the signing key is a short basis B for L1 @A).
 To sign a message pu € {0,1}*, computey — H(u) € Z%, where H: {0,1}* — ZZ is modeled as a random oracle.
Using B, sample x — D£¢ @),s- Output the signature x € Z?.

¢ To verify a signature x on the message p, check that ||x|| < 8 and Ax = H(u).

Here, n is the lattice dimension (the security parameter), g = poly(n), m = O(nlogq), s = IBI| -a)()/log n), and
p = s-poly(log n). Here B is the Gram-Schmidt basis associated with B. You can also use the fact that ||b; || < [Ib; || for
all i.

(a) Show that the above signature scheme is insecure as described. Specifically, sketch an efficient attack (with a
high-level explanation) that breaks unforgeability of the signature scheme. An informal sketch is sufficient,
and you may assume that there is sufficient slack in the choice of the norm bound f (as is often the case). You
do notneed to include a precise analysis of the parameters or of the adversary’s advantage in your description.

(b) Describe in one sentence how to modify the scheme to prevent your attack above (and obtain a secure signature
scheme). Justify your defense in one sentence. Your modification should be a simple modification to the above
construction (there are multiple correct approaches).
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Problem 3: Trapdoor Extension. LetAe€ Zy*™ andletRe {0,1}"* k such that AR = G. We showed in lecture (see
also this summary) that we can use the trapdoor R to sample from a distribution that is statistically close to the
discrete Gaussian distribution D1, ; for sufficiently large s = poly(n,logq) and any u € Zf. Take any matrix

Are ZZX m/, andletA=[A|A rl. Show how to use R to efficiently sample from a distribution that is statistically close
to D1 z) ;- Prove the correctness of your algorithm (and that it samples from the correct distribution). This type of
trapdoor extension will be a very useful building block for constructing advanced cryptographic primitives.

Problem 4: Regev Encryption. In lecture, we described Regev encryption in the setting where the message is
encoded in the most significant bits of the ciphertext. Here, we will consider a variant where the message is encoded
in the least significant bits of the ciphertext. For simplicity, we will just consider the symmetric setting (but everything
generalizes to the public-key setting in the manner described in lecture). Let the message space be Z,, n be the
lattice dimension, g be the modulus, and y be the error distribution. Suppose that gcd(p, g) = 1. Note that p and g
need notbe prime here.

¢ The secret key is a vector s 2 zg.

* To encrypt a message 1 € Z, sample a 2 Zy and e — y, and output the ciphertext ct = (a, sTa+ pe+ ).

(a) Given a ciphertext ct and the secret key s, describe the decryption algorithm. Prove correctness of the encryp-
tion scheme with your choice of decryption algorithm. You may assume that Prle — y :|e| < g/(2p) — 1] = 1.

(b) Show that under the LWE,, 4, assumption, the above encryption scheme is semantically secure. (Technically,
it is CPA-secure under the LWE assumption, but you do not have to show this.)

Problem 5: Key Switching and FHE. In this problem, we will develop another approach to extend Regev encryp-
tion to FHE. The advantage of this scheme over GSW is that ciphertexts are vectorsrather than matrices. Let n be the
lattice dimension, g be an odd modulus, and x be a B-bounded distribution over Z, (where B = poly(n,logg)). Let
sT=[-8"|1]€ ZZ“ be a secret key for a Regev encryption scheme. Similar to the previous problem, we will encode

the message in the least significant bit of the ciphertext. Namely, we say that c € ZZ“ is an encryption of u € {0, 1} if

slc= 1+ 2e for some small e.

(@ Lett' =[-t' [1]€ ZZ’“ for some n’ = poly(n). Your goal in this problem is to construct a method that publicly
translates a ciphertext encrypted under s to a ciphertext under t. We decompose this into two algorithms:

¢ Setup(s,t) — pp: Oninput s € ZZ“ and te ZZ'“, the setup algorithm outputs a set of “key-switching”
parameters pp.

» KeySwitch(pp,c) — ¢’: On input the key-switching parameters pp and a ciphertext ¢ € ZZ“, the key-
switching algorithm outputs a new ciphertext ¢’ € Z ZI“.

Construct efficient algorithms (Setup, KeySwitch) that satisfy the following requirements:

e If cis an encryption of u with error e under secret key s, then KeySwitch(pp, ¢) outputs a new ciphertext
¢’ that is an encryption of p under secret key t with error ¢’ where |€'| < |e| + poly(n,log q).

e If s, t are sampled uniformly, then the public parameters pp output by Setup are pseudorandom under
the LWE assumption (i.e., they are computationally indistinguishable from uniform).

Prove that your scheme satisfies both of the above properties. Taken together, the above properties allows one
to transform a ciphertext ¢ under s to one under t without compromising semantic security of c¢. Hint: Try
setting the key-switching parameter to be an encryption of a (carefully-chosen) function of s under t.

(b) Suppose you have two Regev ciphertexts c;,c; encrypting p; and pp underse Z ;‘“ with error magnitude at
most e. Using the key-switching procedure defined above, show how to publicly and efficiently compute a
Regev encryption ¢, of the product y; y» under a suitably-chosen target key t € Zg“. Note that s and t have


https://www.cs.utexas.edu/~dwu4/courses/sp22/static/sampling.pdf

the same dimension. The error in ¢, should be bounded by O(e?) + poly(n,logq). In this setting, the public
parameters for the key-switching algorithm would be included as part of the public key. Semantic security of
the encryption scheme should still reduce to the LWE assumption. Hint: You may use the identity that for all
vectors uj, vy, Uy, Vs € ZZ, (g ® uz)T(vl ®Vy) = (ulTvl) (uZTvz). Hereu®ve ZZZ denotes the vector that consists
of all pairwise products u;v; for i, j € [n].

(c) In one sentence, explain how you can extend the above procedure to support any (bounded) number of
multiplications. You may make a circular security assumption.

Problem 6: Homomorphic Signatures from SIS. Recall the homomorphic signature scheme from lecture. The
verification key vk consists of matrices A, By, ..., B, and the signing key is a trapdoor td for A. A signature on x € {0, 1}¢
consists of short matrices Ry,...,Ry where AR; = B; — x;G for all i € [¢]. In lecture, we showed that this scheme
was (selectively) secure under the IWE assumption. In this problem, show that it also suffices to base hardness on
SIS, m,q,6, for some choice of m = ©(nlogq), f = mO@ and g = m%? . Here, d is a bound on the (multiplicative)
depth of the circuits supported by the homomorphic signature scheme.

Problem 7: Adaptively-Secure Homomorphic Signatures. The homomorphic signature scheme from lecture
(see also the previous problem) was only proven to be selectively secure. Show how to compose the homomorphic
signature scheme with a vanilla signature scheme to obtain a scheme that is adaptively secure under the same
hardness assumption as the base homomorphic signature scheme (i.e., no complexity leveraging). Prove the
adaptive single-message security of your scheme.

Optional Feedback. Please answer the following optional questions to help us design future problem sets. You do
not need to answer these questions. However, we do encourage you to provide us feedback on how to improve the
course experience.

(a) Howlong did you spend on this problem set?

(b) What was your favorite problem on this problem set? Why?

(c) What was your least favorite problem on this problem set? Why?
(d) Do you have any other feedback for this problem set?

(e) Do you have any other feedback on the course so far?

(f) Are there specific topics that you are interested in seeing in the second half of the course?



