
Addition : C, tcz is encryption of µ , tfhz
:

C
,
t Cz = A (R , + Rz) + quitplz) - G

New error : Rt = R , + Rz , HR+Has E HR , /lost ✗Ralls

Multiplication: C, G-
' (Cz) is encryption of µ,

-

pic
:

C
, G-

' (G) = (AR ,
+
µ , G) G

-Ka)

= AR , G-
' (G) + µ ,

G- G-
' (a)

= AR
,
G-

'
(Cz) + µ, Cz

= AR
,
G- ' (G) + µ ,

(ARat µG)
= AIR , G-

' (a) + µ , Rz) + ftp.G
¥

New error : Rx = R
,
G
" (G) + µiRz , HR✗ Has £ HR , Ks 'm + HRH

*+" """""% d """ed """"&
"
^"" " ^

""
f" """"" %"" "

" & > """ " ""° "
" """"$" " & "

"" ""

§{ multiplicative depth of circuit

↳ also requires super
- poly modulus when D= w (1)

(stronger assumption needed)

But not quite fully homomorphic encryption : we need a bound on the (multiplicative depth of the computation

IÉÉE .

The above construction requires imposing an a priori bound on the multiplicative depth of the computation .

To obtain fully homomorphic encryption , we apply Gentry's brilliant insight of bootstrapping.

High-level . Suppose we have SWHE with following properties
:

1 . We can evaluate functions with mutilicative depth d
2 . The decryption function can be implemented by a circuit with multiplicative depth d

'
< d

Then
, we can build an FHE scheme as follows :
- Public key of THE scheme is public key of SWHE scheme and an encryption of the SOME decryption key under the
SWHE public key

- We now describe a ciphertext - refreshing procedure:
- For each SWHE ciphertext, we can associate a

"

noise
"

level that keeps track of how
many more homomorphic operations

can be performed on the ciphertext (while maintaining correctness) .
↳ for instance

,
we can evaluate depth - d circuits on fresh ciphertexts ; after evaluating a single multiplication, we

can only evaluate circuits of depth - (d-1) and so on
. . .

- The refresh procedure takes any valid ciphertext and produces one that supports depth - (d-d
') homomorphism ;

since d > d'
,
this enables unbounded lie, arbitrary) computations on ciphertext

Idea Suppose we have a ciphertext ct where Decrypt (skat) = × .
To refresh the ciphertext , we define the Boolean circuit Cct : {0,13^1%8 → {0,13 where Cat (Sk) : = Decrypt (Sk , ct)

and homomorphically evaluate Cct on the encryption of sk

↳ Encrypt(pk.sk) → Encrypt Cpk , Cu Csk))
"

of [
✗ F- refreshed ciphertext still

supports d-d
'
levels of multiplication

fresh ciphertext that homomorphic evaluation

supports d levels consumes d
'
levels

Security now requires that the public key includes a copy of the decryption key
g- |

' 2 - - i £
↳ Requires making a

"

circular security
"

assumption

"

'

'

i z . . . I]
openqu-est.cm : FHE without circular security fwm LWE

>

specifically : STC I µ
- STG (when q is power

of two)

(possible from iO) let em be last column of C ↳ similar analysis applies
⇒
µ

-stem =pf-511] cm = µ
- £ for non-power - of -2

Let's take a closer look at bootstrapping for GSU encryption
:

pk : A C- 2g
""

F-nclpk.pe) : C ← AR + µ
- G

Dec (Sk
, c) : compute stc and round [recall : STC = STAR + fu

- STG = ETR + µ . STG)sk :S C- Ii

consider a computation with multiplicative depth d :
can support by setting q

> m°(d)

Consider depth of circuit implementing GSW decryption : circuit has ciphertext column Cm C- Zqn hard-wired and takes secret key
Need to compute round (stem mod g) as a Boolean circuit : s c- Ij as input
- We can write

n Hogg, f-
Ith bit of ith component of s
F- left shift of the binary representation

51cm = IS sij
- (2J - cm; mod g)

i -- i j=o
In

← ith component of cm (available in the clear)

multiplication by 1 bit = AND gate

computing 5cm over the integers can be computed by Oln log g) additions of values with O(log n t log g) bits

Using an addition tree
,
this can be computed by a circuit of depth 0 Clog n t log log g) ← need to be careful since adding 2 k- bit

- Given stem over the in-¥ ,
need to reduce mod q values requires circuit of depth 0110g K),

↳ can do this brute force : 15km/ f n log of
-

of , so need to subtract by at most but can use a

"

3→ 2 trick
"

to add

n log q multiples of q
←
sum only has nlogq terms n K-bit values in depth oclogn + log K) .

↳ Compute all possible multiples of q and select for the one that is within 2g
↳ Selection is tree of AND gates , computable in depth 0 (log n t log log g)

-

Recovering 0/1 from stem (mod g) is just rounding (checking most significant bits of binary representation
- constant depth)

Overall depth : OC log n t log log g) = 0 Clog n) since we always have q
< 2
" (for security) .

To bootstrap , it suffices to support multiplicative depth 0110g n) . ⇒ FHE from LWE t circular security
For correctness

,
we thus require

that q
~ m°"%^)

,
so this is easily satisfiable !

recall approximation factor based on modulus - to- noise ratio

But. . . we did require super -polynomial modules for correctness : of
> m°"%^)

. µ
↳ Hardness based on worst-case lattice problems with su-pei-pynom.at approximation factor - stronger assumption tha- for PKE

Can do better by relying on asymmetric noise growth of GSW multiplication :

C
,
= AR , + µ , G ⇒ (

✗
= C

, G-
' (Cz)

Cz = ARztplz G
= AIR , G- ' (G) + µRz) + µµzG 11Rxlhs £ HR, /In 'm + HRH
a-

Qbser_ve: Rx only scales Ri
, dependence on Rz is additive

Suppose we have Ci
,
. . .

,
Ct with noise R

, , . . . , Rt where 11Rillcs E B for all i c- Et] .

Consider sequence
of homomorphic multiplications where each multiplication involves one of C, , . . . , Ct . Then

, noise accumulation after

T multiplications is bounded by T
- B - m

E- each multiplication increases noise by additive factor B-m

¥Éay : if input to every multiplication is a fest ciphertext , then noise growth is additive not

multiplicative in the depth

f- very efficient private information retrieval protocols
Asymmetric noise growth extremely useful both theoretically and practically !

← base security on weaker assumptions (I PKE !)

How to exploit in the care of bootstrapping ? Rounded inner product does not necessarily have this form . - .

Branching programs
: one way to capture space- bounded computations

→ 0-0>0-4,0→OIf.gg/ouypu.#
State can be expressed as an indicator vector ✓ c- {0,13W

→0 Transition can be expressed as matrix product corresponding to
To →

transition

¥:¥:¥ -
- -

→ 0 / width of branching program F✗_ampk:
0=>0

→ ☒
0¥0I -70 } output 1 (captures

"

space
"

usage of program) 0-0>0

OI>
-70

Mw) = (f ?] transition for

reading 0

TÉtbaÉÉ Ma) = [0 I]
transition for

1 0 reading 1

layered branching program
: graph can be decomposed into layers , edges only between adjacent layers

on each layer, program reads 1 bit of the input (Lame bit of input is read for all nodes in the layer)
↳

Important : same bit of input can be read multiple times

Theorem (Barrington) . Let C :{0.13k → {0,13 be a Boolean circuit with depth d and fan- in 2 (i. e.
,
each gate has two inputs) . Then

,
we

can compute C using a permutation branching program
of length ls 4d and width 5

.

transition matrix can be described by a permutation matrix

In particular , if D= 040g n) , the length of the branching program is ls 4d = 40%9 " = poly (n) .

Let BP = (inp , Min , Mi, ,) be a branching program on input ✗ C- {0,13
"
with length l and width w

:

-

inp :[l] → In] specifies which bit of input to read in given layer
- Mi,o , Mi, ,

C- {0,15
"

specifies transition for reading 0 or 1 in layer I
- Let ✓

☐
=/ ¥] be initial state.

- Let t c- {0,13W be indicator for accepting states in output layer

-

Can compute BPCX) as :

BPCX) = t
" Al

, xinpce)
- Al-i. xinpcey

' - - A
"✗ inp(1)

< V0

To compute homomorphically : given In encryptions of bits of X
, homomorphically compute

Ai
, xinpci,

= ✗
i
' Ai

, ,
+ (1-× ,) . Ai

, o
←
if encryptions of ✗ have noise at most B,

then encryptions of Aiinpci, has noise at most 213

Homomorphically compute sequence of product

E-/ÑipÑ÷iÑ
Observe: Each product involves at least one fresh

"

ciphertext Aiixinpci , , so by asymmetric noise growth of GSW multiplication,

overall noise is l • B- poly (m)

Decryption circuit has depth 0110g n) so associated branching program BP has length 4d =

poly (n) .
↳ Overall noise from bootstrapping

: l - B -

poly (m) = poly (n)

=/or correctness
,
it now suffices to use q

= poly G) , so can get ftp. with polynomial mogul, g ←
/

further improvements possible !

