
HSS schemes are very
useful for realizing a broad range of privacy

-

preserving applications
↳ Here

, we will focus on one application that has good concreteefficieney

Technically, we will consider the dual notion of function secret sharing Gss)

fi → f. (x)

£
→ f. (×,

} £(×) + fix)=f(×)
f- equivalent if we use universal circuits

(
both parties evaluate Ux on)shares of f

[ common input ( pygg :
common function)input sharedfunction shared

Private database queries
: imagine multiple servers hosting replicas of a single database

⇔-

9ⁿY Parameters¥
.im

select
"

top 10 restaurants
"

where
"

category
= Mediterranean's["""ᵈʰhidden

"

compute average price
" where

"

date =t and "

origin=A" and
"

destination = 'N
Goat : Hide query attributes from servers (but revealing structure is fine)

Approach for handling statistical queries (e.g, Count , sum ,
variance) : leverage linearity

consider a query of the form
"

COUNT (column) WHERE ✗ ,
= V

, , Xz
= V2 , . .- ,

✗n
-

_ Vn
"

We can define a predicate
1- (× , , . . . ,

Xn ) = {
1 it ✗1=4 ^ - - . nxn -- un

0 otherwise

secret share f → fi
,
fz and given f , ,

fz to servers

For each record in the database

X,✗z---xn_
i o

- - - o → f. (xi? . .
,
Xiii)

0 1 - - - 0 → f
, txi? . . . ,xÑ

I 0 - - - I -

:

I 0 - - . 0

↳ It
,
(x ,
"'
, . . . ,
xii ' )

item)

Inant : it × , = V , , . . .
,
Xn = Vn ,

then f
, (× , , . . . ,Xn) + fz (× , , . . . , Xn) = 1 (mod p)

else f, (× , , . . , Xn) + fz (× , , . . . ,
Xn ) = 0 lmod p

)

i. I f. (✗ fit
, .
. .

,
✗ Ii) ) + fztxfi '

,
. . .

,

✗
n

" ' ) = COUNT (× ,
= 4 ,

. . -

,
✗ n

-
- Un) . Directly generalizes to computingitem]

linear functions of elements

( important that HSS /FSS outputs linear
Shares)

For queries like select MAX (rating) where ×
,
= v

, ,
Xi- V2

,
. . . ,

✗n=Vn
,

servers first preprocess
the database by computing

MAX (rating) for each combination of valves Ex, , . . . , Xn)
- "

group by
"

query
↳ Reduces now to select row corresponding to ( v

, , . . . ,
Vn) as described above



Key primitive: function secret sharing for a point function :

£14
.
. . . .vn)

(✗ i. _ . - , Xn) = / 1 if 7=4 , . . . ,
xn=vn

0 otherwire

To simplify notation
,
we will write

fylx) : {
1 if ✗ =y
0 otherwise

FSS for point functions = distributed point functions (DPFS)

we can build Dpfs fwm Owfs (in the 2-party setting ) !
↳ Very practical → see Splinter system .

We will start by describing a TN construction where N is the size of the domain ( fy :[N ]
→ foil})

1) Let l = TN
. Represent domain. elements as (ij) where i.j C- [TN

,
]

2) Suppose we want to secret share fit,j* :

sample PRG seeds
,
where output of PRG is l = TN bits

S ,
→1--1 S

,

Sz →# Sz

: :

sit → 1--7 six →E

; ;

se →Iz se

l bits long
need to change

share f, will consist of all the ÉÉ Share fz will consist of same seeds

seeds Si , _ . _

, se except six is replaced with independent seed six

To evaluate at (ij) : compute PRG (si) and output bit j
Obere : For c- ≠ it

,

shares are equal : PRGG;) ⊕ PRG (si) = Ol (secret share of 0)

Problem : All entries in row ¥ are corrupted
↳ Need to add a correction word

W = P*)⊕PRG(s⊕ej
PRG(sie) ⊕ PRGCsi:) ⊕ w =

ej*
( 0 everywhere except position j* )

Problem : Should only ✗or with W in row it ; otherwise all other rows are corrupted
Also need to hide it

Approach: Add
"
correction bits

"

bi , . . . , bi* , . . . , bn
⇐ {0,1}

Include b
, , .

. .

,
bn with both

.

shares
, except flip bit bit in one of the shares :



Shang

is:i (s , , bi)

: :

(six
,

b:*) (six
,
1- bit)

: :

Csn
,
bn) (Sn

,
bn)

w = PRG /sit) ⊕ PRG Csi:) ⊕ ej*

To evaluate at (ij) :
PRGC.si ) ⊕ bi • W

When i ≠ it : PRGG;) ⊕ t.si - w ⊕ PRG.fi?i0-bi-w--0l } Correct :When in it : PRG (six) ⊕ biw ⊕ PRGCS:*) ⊕ ( 1- bi)w = PRE Is:*) ⊕ PRGCsi:) ⊕ w =

ej*

gey : w is blinded by PRG↳i) or PRG ↳*)

(independent of it)all other components in
any single share are uniform

To get shorter keys (size 040g N)) : use a tree- based construction

t.TAX.TN
5
,
- - - six - - ' Sn 5

,
- - - six - - . Sn

bi - ' ' bit . - - bn b,
- . . bit . - - bn "control bit"

Off - path : secret share of ( in 2-party setting : parties have. Identical shares)

↳
Any subsequent computation will yield Kia outputs / secret shares of 0 → secret shares of 0 ]

On- path : control bit is a secret share of 1

↳ Can be used to ✗or in a correction word - can program output to secret share of arbitrary value

To get (log N) - size keys , use binary tree of depth log N :

j•ʰ¥ g⇐•¥,
Associate a PRG seed with root node

↳ Each PRG seed generates seed for child nodes (GGM style)

control bit at root is secret share of 1
: :

↳
Allows programming

of two output values (for left and right nodes]

Off-peak : Program value to secret share of 0 (control bit also 0)

On#th : Program value so control bit is still a secret sincere of 1

Techniques extends naturally to intervalssecret shares consist of share of root PRG seed
, c◦ʳenfe¥;hkÉ-↳

Overall seed size : poly (7)
-

log N

✗ exponential- size keys since typically domain is { 0,13
"

(N = 2^7
.

Beyond 2-parties : Best construction from Owfs has share size 2
"
TN - poly A) (k = # parties , N = domain six)

O.pe#bLem: share size smaller than TN from Owfs leg, can we get FN
-

poly (a) for 3 parties)

Primitive has many applications : private writes to a database → anonymous messaging

generating correlated randomness for MPC

( in some settings , HSS /FSS give the fastest 0T extension protocol in practice)


