
By Fourier inversion
,

I
✗ c- zftx) = 010) = Eyez § (y) = Eyez Ily )

Applied to 9s (x), we have [✗ c- 29s (×)
= Eyez Is (g) = Eyez s.fi/sCy)=sEyez9ysly)

Preimage sampling with a gadget trapdoor. Suppose we know R where AR = G (and A is statistically close to uniform)
.

Starting point : Sampling from Dz,s,c .

Use rejection sampling .

1) Sample ✗ ← In [ C - s - tln)
,
et s . -1cm ]

.
We will set +(n) = w( ✓Togn) .

2) Output ✗ w.p.gs,c(×) . Otherwise reject.

By Gaussian tail bounds
,

when s > w(Foyt) / Truncated discrete Gaussian is

Pr [✗ ← Dz.se : 1×-47 t - s ] £ 2e-
""

( 1 - neg/ (a)) statistically close to discrete Gaussian

setting t = w(%), wp. 1- my/ (a), ✗ will lie in the interval [C - s - tcn)
,
cts . -4m]

.

By construction
, rejection sampling algorithm outputs each ✗ cop . proportional to 9s,cC✗) . Thus

,
this algorithm samples from

truncated version of Dz,s,c, which is statistically close to the desired distribution -

Algorithm will terminate with overwhelming probability after tln) - w( ✓Toga ) iterations :

-

✗ E [ c- s , cts ] up.
"+1/251+1 > 2%4++1) = ¥+1 since s > 1 } By Chernoff bound, algorithm terminates after

-

For ✗ C- [c-s
,
cts ]

, algorithm outputs it w -p. at least gs,c(cts) = e-
"

= 04) tln) . w(log X) iterations wp . I - negllx)

( Tricky problem: constant -time algorithm for discrete }
To sample from DL,s,c for an artitrarf L=L (B) , we proceed as follows : Gaussian sampling

1. Let Vn← 0
, en← c. For i = n , n - 1 , - - , 1

: ( indexing will be convenient for analysis)
cat compute ci ← ¥455T; C- TR and S

,

! ← %/ bill

(b) Sample Zi
← D2

,
si
,
c
,

!

(c) Update Ci - i ← Ci - Zibi and Vi -1 ← Vit Zi bi

2. Output v0 :

Visually in 2 dimensions :
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1) Choose one of these planes (direction along Ñz ) according to discrete Gaussian

.
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Proofidea : smoothing ensures that distribution over the choice of plane for each dimension only depends on distance from

center to the plane . Does not get affected by translation within the plane.
(see below for formal argument from [GVW08]

By construction , Vo C- £1B) since 2, , . .- ,
Zn C- 2

We show that above algorithm outputs samples from Das
, c
:

Lemmy Let ✓ = IZibi be output of above algorithm . Then
,
we can write

iecn]

✓ - c = [ (Zi - di )Ñi
i c-En]



Prooti Let Ti : TR
"
→

span (b, , . . . , bi) be the projection from TÑ onto the subspace spanned by bi
, . .

-

,
bi

.

We show that V-j c- In] :
V - V . - Ty. (g)

= E(Zi - E)Ñ;
i c-Ej]J

⇐
mponents along bi , . . . , bk-1

~

For j = 0 , claim is immediate (v -- Vo
,
To (co) = 0 )

. Component along bk

Suppose claim holds for j = K
- 1

.

Then
,

✓
• ~

[ Vk = Vk-1 - Zkbk]Vo - VK- Tlkcck) = Vo - VK.it Zkbk - (That (Ck) + ckbk)
= (Vo - Vk-1 ) + Zkbk - -11kt (Cky) - Tlkylzkbk) - ÉKÑK [ Ck = Ck-1 + Zkbk]

= (Vo - VK-i - Tlky (Cky )) + Zklbk- Tik-1 (bk)) - CÉÑK

÷
= [ (Zi - E)Ñi + (2- K - C'k)Ñk [inductive hypothesis ]
i Elk-1]

Claim now holds by considering j = n
: Vn = 0 , Cn

= c Lan(c) =c since B is a basis for TR
" )

.

Lemoine. Suppose s > 111511 - cotton) .
For any VELCB) = { Zibi

, algorithm outputs v with probabilityieen]

IT
-1

9s,c(v)
ieen,

Psi:c:(2)

y
> gs (E lzi -E) ñi)i c-Cn)

Proofs we compute the probability that algorithm samples z , , . . . , Zn
: = exp (→ 1/9 (2- i -É)Ñi /1%2)i c-[n]

IT
Pr [ algorithm outputs v ] = IT Dz.si.ci (Z ;) = item %"

'
" (%)

118 /z-i-cilb.ME = E. Hi -c://zj-cjlbitbjic-f.in]
ion] ijon]

ieen]
%:c:(2) = E. Hi - E)2115112

i c- In]

by orthogonality

Now
,
observe that

ian, ian,
9s

H-i-c://lb.TN/T9si.ci(Zi)--TgsKzi-q.g.yji, ,) =

⇒ "Kai -E) bi ) -- IT

=p, (v - c) = ps.EU)
i c-G)

y
ion] ien]

t i
by previous lemma

since g%,c(x) = exp (1×-421%2) ti are pairwise orthogonal
=

gs ( (X - c) K) and psis rotationally invariant

_heorenCGentry-peikert-vaik-un-ana-ho.nl . There is an efficient algorithm that takes a basis B of a lattice I =L(B)
,
a coset

CTL and a Gaussian width parameter s 7111311
' w(tFgn) and outputs a sample

whose distribution is statistically close to DL.sc

Pro_of. Follows by combining above algorithm with sampling algorithm for integers.

The desired distribution can be written as

DL.sc (v) = fs.lv) . Q
"

for some normalization constant QE TR
. By the previous lemma

,
the algorithm outputs V C- LIB) up.

%c(v) . l-Tlfsi.ci(2)
it"
4- problem: É could be correlated with V so this is not

a fixed normalization constant



Now , 7 (2) £ Tn (2) - w(F) = wllogn) . When S 7111511 -WUJI) , then Si
'
= %1b.ir/1Zw(Tgn)-- 2

Thus , gsi.ci (2) E [1- negl . , ltnegl .] -

gs (2), which is a quantity that is I¥I of V and C . Thus
,
the algorithm outputs

v with probability proportional to gs.ca) , as required .

Implication : To sample from DL.sc, need a basis B for 1=1437 where HBTIE %(sign) . Need a short basis to sample

preimages .

Nett: Sampling discrete Gaussians with a gadget trapdoor .

Suppose AR = G where R is short
. Sampling pre-image for A is easy

: to solve Ax=y ,
set ✗ = R - G-

'
(y) .

To sarnie a pre
- image of A, candidate approach is to sample Z ← Ds'-(G) and output ✗ = RZ.

y

Since G = gt ④ In ,
it suffice to sample from Ltglgt) . Now Ltlgt ) can be described by the following short basis :

txt

B =
-?

'

:}
,

) C- 2g where t= lug q

Observe

( I 2 4 - - . 21%8 ) - -3
.

.

.

, ,

) = 0 (mod g) (this is when q is power of two,
similar

construction possible for non-power- of -two as well ]

Gram- Schmidt norm of this basis is very short
: 13=2In so 111371=2

.

Can use GPV to sample from Dgtugt) , s ,c
whenever s > FgÑ . Procedure is also very simple since B~ = 2in

.

GVW allows us to sample ✗ ← Dzm
,
s such that Gx =

y for
any y c- 2g .

What about the distribution of Rx
.

Certainly ARX = Gx =y , but is Rx still a discrete Gaussian?

Yes
. . .

but discrete Gaussian is not spherical . Resulting distribution is discrete Gaussian with covariance SZRR?

↳
Is this problematic?

Yes : given multiple samples , can
estimate covariance and

this leaks 12 the trapdoor)

spherical Gaussian centered Distribution after resealing samples
at 0 by [if ]

Our goal is spherical discrete Gaussian with widths (i.e. , covariance 52in) .

ke#pÉ. Gaussian convolution lemma
"

sum of two independent Gaussian s is Gaussian
"

- analog generally holds for discrete Gaussian over lattices

( see [Pei 11]) .
SZRRTWe can sample ✗ where AX -- y where ✗ is from a Gaussian with covariance

To
"

correct
"
the distribution

,
we can sample 2- where Az = 0 and Z is discrete Gaussian with covariance 5^21 - SZRRT



Given R where AR= G
, goal is to sample X - Dzm

,
s where A×=y

1. Sample perturbation p
C- 2M from discrete Gaussian with covariance §In - SZRRT (and mean 0)

2. Sample U ← Dzm
,
s
,
where GU = y

- Ap [Note : we will need that 555 - see analysis below]

3. Output ✗=p + Ru

LEI: Ax = Apt Aru = Ap + Gu = Apt y
- Ap =

y
Severity : Covariance of ✗ is § In - SZRRTTSZARURT

= 52in
,
which is independent of Ro [✗ ~ Dzm

,
5 ]

e-
-

Can we sample a discrete Gaussian over 2m with covariance 52 In- SZRRT ?

Requirement. 52in - SZRRT is positive definite.
↳
In this case

,
we can write 5-In- 5 RRT = MMT (one such decomposition is given by Cholesky decomposition)

yes , (R)
=
Max Krull↳ Can now sample for DZ? 1 and scale by M
pull -- i

Sufficient condition for 52In - SZRRT to be positive
- definite ? I = s . s

, IR) where R is the largest singular value of R

←

quality of trapdoor is measured by Si (R)

Note: Using GPV sampling algorithm, we can set s=w(Ñgn) since d-(G) has good basis (Gram- Schmidt norm of 2)

parameters n.mg explicitlyRe#: We will abstract the above sampling procedures into the following aggon.y.hn, , #
sometimes

,
we let TrapG- take lattice

TrapGen (E) : Outputs (A ,
R) where AE2q

""

is statistically close to uniform
,
R is short and AR = G.

SampleGaussian (s) : Outputs ✗ ← Dzm
,
s [rejection sampling]

SamplePre (A , R ,
U

,
s) : Outputs ✗ ←DIE(A)

,
s [GPV sampling followed by perturbation ]

Guge : if s > s , (R) w(Fgm) , then for CA,R) ← TrapGen (E) : if RE {0,13^+7 can bound

{ ✗ ← Sample Gaussian (s) : (×
,
AX) } s

, (R) em

±

{
y
I Zqm ,

✗ ← SamplePre (A ,R , us
s) : IX.y) }

bound on norm of samples from Dzm
,
s
:

GPV signatures in Rom:/
could also be a short

basis for A ✓ 2g
" 'm

f
{°"}
""

f E s - w(log 7) w-p - l - neg/ (A)✓

Setup (ti) : IA ,R) ← TrapGen 11×7. Set vk = (A
, p) and sk=(A ,R, s) where S

, p=E(m)
sign(sk, m) : compute y

← Hlm) C- I} and output 0
← SamplePre (AR> 9s) I need to be careful , see HWI

!

Verify (vk.vn , of : check that 11m11 £13 and A - o = Hlm)

Security reduces to ISIS mm , qp . In the security proof, reduction algorithm does not have trapdoor . Will simulate signing queries on m by
sampling 0

← Sample Gaussian (s) , programming
Hlm) ↳ Acr

.
This is statistically close to real signature distribution .


