
So far
,
we have shown how to build symmetric crypto and public-key crypto from standard lattice assumptions (e.g. , SIS and LWE)

But it turns out, lattices have much additional structure ⇒ enable
many new advanced functionalities not known to follow from

many other standard assumptions leg, discre log , factoring , pairings , etc.)

We will begin by studying fully homomorphic encryption (FAE)
↳

encryption
scheme that supports arbitrary computation on encrypted data [very useful for

outsourced computation]

Abstractly : given encryption Ctx of value ✗ under some public key , can we derive from that an encryption of f- (X) for an arbitrary function f ?
- So far

,
we have seen examples of

encryption
schemes that support one type of operation G.g., addition) on ciphertexts

-

TÉÉyptiÉÉ : homomorphic with respect to addition

-

ReÉyption ? homomorphic with respect to addition

-

For FHE
, need homomorphism with respect to two operations : addition and Mutiplication
M_É in cryptography (dates back to late 1970s !) - first solved by Stanford student Craig Gentry in 2009
↳ revolutionized lattice- based cryptography !

↳
Very surprising this is possible : encryption needs to

" scramble
"

messages
to be secure

,
but homomorphism requires preserving structure

to enable

arbitrary computation

GeÉbpi : 1 . Build somewhat homomorphic encryption (SWHE)
-

encryption scheme that supports bounded number of homomorphic operations
2. Bootstrap SWHE to FHE (essentially a way to

"

refresh
"

ciphertext)
Focus will be on building SWHE (has all of the ingredients for realizing FHE)

starting-point: Regev encryption
A-

pk : A =

A- + et / C- 2g
""

/ Invariant : STA = et51=[-5 / 1] c- Zagsk:

on
- '

y
as long as ér is small

, decryption succeeds
ctir-to.im

,
c ← Art /Loyal .pe/
↳

sic = 5 (Art (
°
"

]) = etr + 19km7 .1%7.pe

We can easily extend the ciphertext to be a matrix (this provides a redundant encoding of the message µ) :

MXM

- Pad the matrix Ñ = /
A

-

01m
-nlxm } C- 2g } s^TÑ = 51A = et

and the key I = (Soun) C- Zqm

- To encrypt, sample R E {0,13mm and compute

on ✗ (m
- n)

c ← ÑR + µ-11-1 . [In01m-n/ ✗n Olm-n) ✗ (m-nj]
F- [¥÷×m) ← security unaffected (LWE

+ LHL)

consider decryption :

JTC = ÉÑR + µ
. 111.5

' /¥8]

= ER +

µ
. 11-1 - sit

I µ
. / £7 - IT ←

Decrypt as usual since I contains a component with value 1

Observation : C is a ciphertext and 5 is a left eigenvector of E with associated eigenvalue µ
- [£1

.

Suppose for a moment that this was an exact eigenvalue (and we do net scale µ) .
←

no scaling needed if there is no error

Then
, suppose IT C,

=

pm ,
IT and STC = µzs^T

-

Eigenvalues add : IT (C , + G)
=

µ ,
5T + µzs^T = (µ ,

+ pea)s^T } fully homomorphic !
-

Eigenvalues multiply : ITC, Ca =

µ , 5Th =p,µzJT What about the error?

Back to Regev : ETC
,
= ER

,
1-

µ ,
- 129-7 - IT

IT Cz = eTRz t plz
- 19-21 - IT

✗
not surprising : Regev is additively homomorphic

Addition : IT (C , +G) = d- (R
,
+ Ra) + (µ ,

+ plz) - /£7
' IT basically works ; error grows additively

Multiplication : ITC, Cz
= (ÉR

,
+ µ ,

- (£751)Cz
= eTR.cz + µ , -11754
= +Ñ¥+1µl;7ér
ER

, is small , not the right if µ ,
= 1
,
also
←

lots of problems !!
but Cz is not ! form . . . large

Marine : error term from one ciphertext multiplies with a ciphertext during homomorphic multiplication → noise blows
up

Solution : Use the gadget matrix (i. e. bit decomposition) to reduce. matrix sizes !

Gentry - Sahai - Waters (GSW) FHE :

1
"

-

setup (1
') : sample Ñ←2q"m → pk= A = ñté] (STA = et)

stag
sk = s = [-5 / 1]

e ← ✗
m

-

Encrypt (A. µ) : R
± {0,13mm

f- new message embedding
C.← AR + fu.GE Zj×m

-

Decrypt Is , c) : compute 5CG-
' (1- - In) and round as usual

Cerys : ÉCG
- ' (£ - Im) = 5 (AR + µ

- G) G-
'

(£ - In)
= ETRG

-' (1- In) + £51 GSW-inar.at : c-- AR +µ
- G for some small R

-

Decryption succeeds it m - B - 11 Rlly -< 9-
4

suppose e
is B- bounded

↳ choose of
> 4m13 - ARKS

↳ IIÉRG
- ' (£In)/ Ics £m2B

as long as m2B < ¥
,
scheme is correct

F- if
q is power

of two or

Secuyi Identical to Regev . we choose scaling factor to

be a power of two , then

multiplying by G-
' f) does nottom-morph.sn : suppose C

,
= AR

,
+ µ , G

change norm → tighten bound to MB < ¥
Cz = AR

,
+ pub

Addition : C, t Cz is encryption of µ , tfhz
:

C
,
t Cz = A (R , + Rz) + quitplz) - G

New error : Rt = R , + Rz , HR+Has E HR , /lost ✗Ralls

Multiplication: C, G-
' (Cz) is encryption of µ,

-

pic
:

C
, G-

' (G) = (AR ,
+
µ , G) G

-Ka)

= AR , G-
' (G) + µ ,

G- G-
' (a)

= AR
,
G-

'
(Cz) + µ, Cz

= AR
,
G- ' (G) t µ ,

(ARat µG)
= AIR , G-

' (a) + µ , Rz) + ftp.G
#

New error : Rx = R
,
G
" (G) + µiRz , HR✗ Has £ HR , Ks 'm + HRH

*+" """""% d """ed """"&
"
^"" " ^

""
f" """"" %" "

" & > """ " ""° "
" """"$" " & "

"" ""

§{ multiplicative depth of circuit

↳ also requires super
- poly modulus when D= w (1)

((stronger assumption needed)

But not quite fully homomorphic encryption : we need a bound on the (multiplicative) depth of the computation

IÉÉE .

The above construction requires imposing an a priori bound on the multiplicative depth of the computation .

To obtain fully homomorphic encryption , we apply Gentry's brilliant insight of bootstrapping.

High-level . Suppose we have SWHE with following properties
:

1 . We can evaluate functions with mutilicative depth d
2 . The decryption function can be implemented by a circuit with multiplicative depth d

'
< d

Then
, we can build an FHE scheme as follows :
- Public key of THE scheme is public key of SWHE scheme and an encryption of the SONE decryption key under the
SWHE public key

- We now describe a ciphertext - refreshing procedure:
- For each SWHE ciphertext, we can associate a

"

noise
"

level that keeps track of how
many more homomorphic operations

can be performed on the ciphertext (while maintaining correctness) .
↳ for instance

,
we can evaluate depth - d circuits on fresh ciphertexts ; after evaluating a single multiplication, we

can only evaluate circuits of depth - (d-1) and so on
. . .

- The refresh procedure takes any valid ciphertext and produces one that supports depth - (d-d
') homomorphism ;

since d > d'
,
this enables unbounded lie, arbitrary) computations on ciphertext

idea: suppose Ctx = Encrypt (pk, ✗) .

Using the SWHE , we can compute ¥, = Encrypt lpk.tk)) for any f with multiplicative depth up to d

Given Ctx
,
we first compute

Ctu = Encrypt lpk, 4-×) (strictly speaking , encrypt bit by bit]

