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Abstract

In recent years, the current public key infrastructure system (known as X.509) has been criticized
for its reliance on centralized certificate authorities which creates single points of failure which can
be exploited by attackers to allow for forged public key certificates. As a result, researchers have
begun experimenting with decentralized PKIs as a way to remove the trusted third parties and expand
scalability, typically through the use of blockchain platforms like Ethereum. In this paper, I will discuss
in detail, the smart contract based approach discussed by Patsonakis et al. in [PSRK17] and [PSKR19]
which is the first DPKI system to have a security proof based off the strong RSA assumption and has
been tested on an Ethereum testnet. I will also discuss QChain, the quantum-resilient blockchain
DPKI proposed by An and Kim in [AK18] which is based on GLP signatures and the Ring-LWE problem.
Although these schemes are not perfect and cannot replace the current X.509 system, they provide a
basis for future work that can hopefully lead to a more decentralized and scalable public key system.

1 Introduction

Public key infrastructure (PKI) is defined by NIST as "a set of policies, processes, software, and workstations
used for the purpose of administering certificates and public-private key pairs, including the ability to
issue, maintain, and revoke public key certificates." [GGF17] PKIs serve as an important aspect of public-
key cryptography, as they associate identities with public keys and allow users to validate the accuracy of
the public keys they use every day in services like the World Wide Web. However, the predominant form of
public key infrastructure used today, X.509, relies on centralized certificate authorities (CAs). This creates
single points of failure, which when exploited, have led to attackers forging certificates. Examples of these
incidents include Operation Black Tulip which attacked DigiNotar, one of the largest certificate authorities
in the Netherlands, and Monpass, a major certificate authority in Mongolia which was attacked by hackers
who used a backdoor to spread malware.[Pri11] [CMV21]

In recent years, several researchers have proposed decentralized versions of PKIs (DPKIs), many
of which use blockchains and other forms of distributed consensus to provide the same functionality
of centralized systems like X.509 while also providing improved scalability and removing singe points
of failure for a more secure system. In this overview, I will discuss in detail the Smart Contract DPKIs
introduced by Patsonakis et al. which were the first provably secure DPKIs introduced and based on
public-state additive universal cryptographic accumulators [PSRK17] and later Merkle hash trees [PSKR19]
and Q-chain, a quantum-resistant blockchain-based DPKI by An and Kim which uses lattice-based GLP
signatures.[AK18]



2 Preliminaries

Standard notions and definitions are mentioned in Appendix A. For [PSRK17], the standard notion of PRG,
2-Universal Hash Function Family, and the Strong RSA Assumption are required as well as the Random
Oracle Model, which are formally defined in Appendix A. For [AK18], Ring-LWE and LWE problems are
required which are formally defined in Appendix B which are used as a basis for the GLP signature scheme
discussed in this section. The notion of public-state, universal additive cryptographic accumulators is
discussed in the next section as well as Appendix C.

2.1 Public Key Infrastructure (X.509)

This paper primarily compares DPKI systems to the current, most popular PKI certificate system, X.509.
X.509 is a centralized system first introduced in 1988 and involves centralized certificate authorities
(CA) which authenticate and issue certificates for public keys to other entities. CAs themselves have a
hierarchy of trust, although that is beyond the scope of this paper. Similarly, registration agents (RAs)
are used to register a public key to an entity which is then certified/verified by the CA. As mentioned
in the introduction, this results in single points of failure which can be used by an adversary to forge
certificates, thus allowing for malicious communication under false identities. For more information
about the general structure of X.509 system, refer to this NIST publication [KHPC01].

2.2 Blockchains

Blockchains were first introduced as a method to ensure document timestamp integrity by Bayer, Stornetta,
and Haber in 1993 [BSH93]. They consist a growing list of records (known as blocks) that are linked together
using a cryptographic hash of the previous block and typically contains transaction information and
timestamps (generally represented as a Merkle tree with data nodes represented as leafs). However, the
primitive was not popularized until 2008 when it became the foundation of the cryptocurrency Bitcoin.
[Nak09] This later inspired more complex platforms like Ethereum which allow for smart contracts, or
self-executing protocols, to be run by the decentralized network of miner nodes whenever a certain
condition is met. [But13]

In this section, I will discuss the general structure of a blockchain which will helpful to understand
QChain [AK18] as well as Ethereum since that is the blockchain platform that [PSRK17] and [PSKR19]
used to test the practicality of a DPKI system (which is explained further in the succeeding sections).

2.2.1 General Structure of Blockchain

Blockchains were first popularized by Bitcoin, a decentralized P2P network that runs a virtual currency
devised by Nakamoto in 2008 [Nak09]. All users on the blockchain network can create a transaction
(whether it is an actual transfer of Bitcoin between accounts or a registration of an id-pk pair, etc.) which
are then generated into blocks using a mechanism called Proof-of-Work (note that PoW itself is a rather
large topic and beyond the scope of this paper). Just note that nonce is a random value used by PoW to
validate blocks. Similarly, blockchains are said to be immutable, which means the state of the system (and
therefore the history of transactions) cannot be changed once verified (although there can be exceptions,
see [Lei17] and the discussion on Ethereum Classic at the end of the paper). Once PoW verifies a block, it
is broadcasted to the entire network and registered as part of the "chain".

Each block header has the hash value of the previous block and the transactions of each block are
used to generate a Merkle hash tree (to save space and ensure validation of transactions) and the first



block is the Genesis block which is hardcoded to ensure the start of the chain. In essence, the P2P nature
of the blockchain ensures that there is no need for a trusted third party, which is why it has been proposed
as a way to construct a decentralized PKI.

2.2.2 Ethereum and Smart Contracts

Ethereum is a cryptocurrency and open-sourced smart contract platform created and maintained by the
Ethereum Foundation. Similar to other cryptocurrencies, Ethereum consists of a peer-to-peer network
of miner nodes that validate and execute transactions in exchange for "mined" Ethereum and using
networking consensus protocols and cryptographic puzzles known as "proof of work" to ensure that
the transactions cannot be tampered with. However, Ethereum is unique in that it has the Ethereum
Virtual Machine (EVM) that allows for states to be managed by the Ethereum network and for arbitrary
computation to be executed by participant nodes. These arbitrary computations can be constructed as
smart contracts and programmatically executed by nodes whenever conditions are met. This is the main
mechanism in which DPKIs have been proposed to run on blockchain platforms.

In order to pay for the computational effort required to execute a smart contract, a person must pay
a "gas" fee to the miner who ends up executing/validating their computation (this has changed with
EIP-1559 [Sta21] but for the purposes of the paper, this simplified view of gas fees suffices). As a result,
more computationally heavy operations will cost the user more money in the form of gas. For more
information about gas fees or Ethereum in general, refer to Section 3.4 as well as the Ethereum docs
themselves.

2.3 Distributed Public Key Infrastructure (DPKI)

There is no formally agreed upon definition of what a distributed public key infrastructure (DPKI) system
is. In general, it should fulfill the principles of non-repudiation (a user cannot successfully deny that data
was signed by their id-pk pair if registered by the system) and revocation (only owners of the id-pk pair
should be allowed to deregister/revoke their id-pk registration given a certain condition is met). More
specifically, Patsonakis et al. define an "ideal" functionality for what their smart contract DPKI system is in
order to formalize what they wish to accomplish. I include a summary of the formalized ideal functionality
below which can be used to generalize what DPKI systems should accomplish. Similarly, DPKIs should
be able to replicate the same features as the current X.509 infrastructure. Similarly, this model assumes
that there is a set of corrupted clients Ccor r from the initialization and this set is immutable, which can be
unrealistic for real-world applications. For more information, see the original paper.

2.3.1 Ideal Naming Service Functionality (Fns ) from [PSRK17]

The naming service Fns interacts with n clients, m servers, a trusted party T for setup, and an adversary
S called the simulator. This adversary controls a set of corrupted clients Ccor which allows it to change
the requests sent by those clients. The adversary is also allowed to see all the requests made by any
client and the responses by the service, but is not allowed to change the output of the system. Note that
relying on a trusted party T for setup does not create a single point of failure since this can be replaced
with a distributed protocol which generates the parameters necessary for setup. The system stores (id,
public-key) pairs and supports the following operations:

• Registering pairs: A client can try to register an (id, public-key) pair if the following conditions are
met:

https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/


– The simulator allows the pair to be registered and there is no existing registration associated
with the id.

– The simulator/adversary sends a corrupted request with (id’, public-key’) when the client is in
Ccor and there is no existing registration associated with the id’.

Success/failure messages are sent back to the client via public delayed output.

• Revoking registrations: A client can try to revoke an (id, public-key) pair. In order to prevent
malicious revocations, there is a revocation relationship R which must be achieved for the request
to succeed (i.e. a NIZK proof, etc.). If the simulator allows/corrupts the request and the revocation
relationship R is achieved, then the registration is revoked and success is sent back via public
delayed output.

• Retrieving/Verifying pairs: Assuming that the simulator allows the request to go through, the
system will return the public-key, verify that an id has a registration associated with it, and verify
that a given mapping of (id, public-key) is valid.

In [PSKR19], this functionality is implemented using smart contracts or a blockchain where miners
act as the servers that manage this service. In [AK18], the authors attempt to allow for this functionality
through a purpose-built quantum resilient blockchain.

2.4 GLP Signature Scheme (as defined in [AK18] and [GLP12])

One of the major components of the lattice-based blockchain DPKI proposed by [AK18] utilizes a modified
version of the GLP signature scheme introduced in [GLP12] by Güneysu et al. based on the Ring-LWE
problem. The major difference between the scheme used by [AK18] and the GLP scheme is the use of
Number Theoretic Transformations to optimize some calculations. For more information on the Ring-
LWE problem (which is similar to the LWE problem) as well as the modified scheme used by An and Kim,
see Section 4 and Appendix B and E.



Algorithm 1 GLP Signature Scheme from [GLP12] and [AK18]

Signing Key: s1, s2
R←−Rpn

1 .

Verification Key: a
R←−Rpn

, t ← as1 + s2

Hash function: H : {0,1}∗ → Dn
32

Sign(µ, a, s1, s2) :

1. y1, y2
R←−Rpn

k ;
2. c ← H(ay1 + y2,µ);
3. z1 ← s1c + y1;
4. z2 ← s2c + y2;

if z1 ̸∈Rpn

k−32 or z2 ̸∈Rpn

k−32 then
Return to step 1;

else
return (z1, z2,c);

end if

Verify(µ, z1, z2,c, a, t ) :

if z1, z2 ∈Rpn

k−32 then
c ̸= H(az1 + z2 − tc,µ);
return reject;

else
return success;

end if

Where Rpn =Zq [X ]/(X n +1) and Rpn

k defines the subset of the ring Rpn
where all polynomials have

coefficients in the range [−k,k]. For more information, refer to [GLP12] and [AK18].

3 Smart Contract DPKIs ([PSRK17], [PSKR19])

In 2017, Patsonakis et al. proposed the first provably secure DPKI based off of public-state additive
universal cryptographic accumulators like those in [LLX07] and smart contracts that run on the blockchain.
This allows for the size of the smart contract state, which is the most expensive resource to access on the
blockchain, to be minimized as well as the scheme to derive its security from the strong RSA assumption
under the Random Oracle model.

3.1 Public-State, Additive, Universal Accumulators

The DPKI sketch introduced in [PSRK17] heavily utilizes a public-state additive universal cryptographic
accumulators, of which the overall security is based off the strong RSA assumption under the Random
Oracle model. Informally, public-state additive universal cryptographic accumulators means that no
trap-door knowledge is required for one to perform any operation with the accumulator (public-state), it
allows for the addition of elements (additive), and allows for both membership and non-membership
witnesses (universal). Crucially, the authors’ accumulators require the use of two trusted parties: T
runs the key generation algorithm and publishes the accumulator’s public-key while Tacc maintains the
accumulator, which contrasts from a strong accumulator [CHKO12] which makes the key-generation



algorithm publicly executable. A succinct version of the formal definition is included in the appendix and
refer to the original paper for more details.

This scheme is identical to that proposed by Li et al. [LLX07] with the addition of a Map procedure
which maps an arbitrary string (i.e. an identity) to a prime number which can then be used by the
accumulator. A brief description of the Map procedure is provided in the appendix. For more details, refer
to the original paper [PSRK17] as well [GHR99] which Map is heavily inspired by.

Finally, the authors proved the entire accumulator and Map was secure under the strong-RSA as-
sumption and Random Oracle Model. I omit these proofs for brevity since the proofs themselves are not
important for the overall security proof of the protocol. Merely the fact that the accumulators and Map
are secure is sufficient for the security proof described in Section 3.3. For more details, see the original
paper. Before discussing the authors’ attempt to implement the DPKI in [PSKR19], I will briefly discuss the
type of naming service functionality Fns that the authors wished to provide with their DPKI and provide a
discussion of the security proof itself.

3.2 Naming Service Smart-Contract Functionality

The authors define an ideal functionality Fns which interacts with n clients, m servers, and trusted party
T which is responsible for setup, and adversary S which is called the simulator as discussed in Section
2.2.1. This is the functionality they wish to achieve using their smart contract primitive.

Notably, the authors only allow for static corruptions (the simulator specifies the set of corrupted
clients, Ccor r before setup) in this model and requires the need for a trusted party T , which are both
unrealistic/insecure assumptions to make in a practical setting. With smart contracts, the size of the state
needs to be minimized since it is the most expensive resource to access. As a result, the authors separated
the storage from verification by maintaining two public-state universal accumulators as discussed in
Section 3.1. and Appendix B. These accumulators have constant-size and are based on RSA.

The smart contract works by running a program P : it initializes the two accumulators and stores the
state of the service as the parameters (pk1, pk2,R) where pk1, pk2 are the public keys of the accumulators
and R is the revocation relation. One accumulator stores (i d , pk, i ,op) where op= a marks an element as
added and op= d marks an element as deleted. This allows for deletion to be recorded without needing
trapdoor/private-key access to the accumulator. The other stores (i d , i ,op) which allows clients to infer
if an identity is registered in the system. When a server asks for an identity registration, it checks the
current state (i.e. the two accumulators) to see if the identity is currently in the state and if not, it adds
the identity pair to the accumulator. A similar process is involved with revocation, except it also checks
that the revocation relation R. As a result, the smart contract acts as Tacc by managing the state of the
accumulators. For a more information, see the original paper.

This implementation requires an honest majority of servers (which is also an underlying requirement
of most blockchains in general) and allows the adversary to have full knowledge of the computations per-
formed and to be able to interfere through allowing/aborting an execution of P , but it cannot change the
output. Servers act as "miners" and the trusted party T and clients interact through posting transactions,
with the installation of program P being a special transaction. Similarly, executing P requires it to be run
by all miners and recording its state update in the blockchain, resulting in the security of the scheme
being derived from the security of the blockchain (the persistence of transactions). Although the trusted
setup is assumed to be done by a trusted party, this step can be replaced with distributed protocols which
remove the single point of failure.

The authors also introduce FU DB which is an "unreliable database" which stores the identity pairs. It
is "unreliable" as the adversary is allowed to tamper with its contents. A client queries FU DB to find out the



information necessary to interact with the smart contract (i.e. whether a pair has been registered or not)
and following an interaction with the smart contract, the client stores the output in FU DB . The authors
then prove that the protocol informally described here (involving the smart contract, program P , and
FU DB ) is secure using the Strong RSA Assumption in the Random Oracle Model. The proof is discussed in
detail in the next subsection.

3.3 Security Proof of the Protocol

The main goal of the security proof is to show that the smart contract proposed by the authors is equivalent
to the ideal functionality. The correctness of the model means that it only fails to provide the correct
action (i.e. returning the current mapping, registering a new mapping, etc.) if the client is part of Ccor r as
defined by the adversary prior to setup and does not get tricked by the adversary by committing to a false
registration or revocation request. For example, the model should not allow for a mapping to be revoked
unless the revocation relationship R is met.

More formally, the authors prove the following: The "hybrid" protocol using the smart contract and
FU DB is secure and realizes the ideal functionality Fns under the Strong-RSA assumption in the Random
Oracle Model.

3.3.1 Proof Sketch

There are five main commands of importance: Init,Setup,Register,Revoke and Retrieve. For the sake of
brevity, I will only consider the case with Revoke/Register. I separated the proof into each of the possible
messages/commands that can be sent by the environment to show that the output of the parties is
indistinguishable from the hybrid model and the ideal functionality.

The environment Z sends a Revoke/Register command to a client C : There are essentially two
subcases in this situation: either the adversary A changes the state of FU DB prior to the command by Z
or it doesn’t. In the case that A does change the state, either it has an impact on the given command (i.e.
changing it so that the identity you want to revoke doesn’t exist) or it doesn’t. In the case that it does have
an impact, an honest client in both situations (ideal and hybrid) will fail when the state is incompatible
with the command they want to do. With corrupted clients, the accuracy and security of the protocol is
reduced into the security of the accumulators themselves. This is because the corrupted client would not
be able to compute the right accumulated values necessary for the protocol to approve the forged request
unless the accumulator itself was insecure. Since those cannot be manipulated freely by the adversary,
the security of the scheme is dependent on the strong RSA assumption of the accumulators.

In the case that adversary does not change the state of FU DB prior to Z ’s command, an honest client
will either succeed (if they can) or fail if their command is incompatible with the state. In the case of
corrupted clients, they can only convince the smart contract and FU DB of false information if they can
corrupt the accumulators (similar to the previous case), thus reducing the security to the strong RSA
assumption. This is true regardless of whether I am discussing the hybrid model or the ideal functionality.

• Z sends (si d , Init) to a server Si : The only difference between the hybrid and ideal functionality
is that the server sends an initialization command to the smart contract and FU DB so they can be
added to the set and the adversary is notified in the hybrid model. In the ideal world, the simulator
simulates the smart contract and FU DB so after the ideal functionality Fns send the initialization
command, it simulates the initialization. In both situations, the server receives success.



• Z sends (si d ,Setup,R) to the trusted party T : In the hybrid model, the trusted party T sends an
install request to the smart contract which (given the adversary A’s approval) then runs the program
P who initializes the keys for the two accumulators, initializes the state, and gives these parameters
back to the smart contract which if the adversary approves again, sends back to trusted party T
which then sends success to Z . In the ideal functionality model, the simulator simulates T and the
smart contract and when the adversary approves, the simulator S sends a command to Fns which
then returns success also. Thus, both in the ideal and hybrid model, Z is returned success.

• Z sends a Retrieve command to a client C .: This case parallels the prior cases. At most, a corrupted
client would be able to get information about the state itself, but this does not influence the output
of the functionalities in either model and as a result does not matter for our analysis. As a result, the
security follows from the accumulator security.

For more information (such as a formal proof), see the original paper.

3.4 Improvements to the Original Design ([PSKR19])

In 2019, the authors revisited the Smart Contract PKI [PSKR19] and implemented the design in Ethereum,
one of the largest blockchain systems that support smart contract capabilities. They found that the design
was impracticable to implement for large-scale projects and instead created a Merkle hash-tree based
smart contract system that could leverage the tree hashes of the blockchain to provide performance
benefits.

In this subsection, I will discuss the performance issues of the implementation of the previous RSA-
based design as well as the newer hash tree-based design that was found to be more efficient when
implemented. Note that price estimates are for illustrative purposes only and are based off the price of
Ethereum on 4/25/2022 at the specific time I was writing this paper and that the conversion of gwei to
dollar amount may be inaccurate but serve as a relative cost per operation.

3.4.1 Performance issues of RSA-based ([PSRK17]) Smart Contract DPKI)

The authors implemented the RSA-based design by creating a testnet of Ethereum servers running the
smart contract program. The bit lengths of the exponents, moduli, and exponentiation bases were set to
195, 3072, and 3072 bits long respectively.

They ran four sets of experiments: evaluating the Big Number library operations (primality tests,
modulo multiplications, and exponentiation), evaluating the RSA accumulator (accumulations of 195-bit
prime numbers, (non) membership witness verifications), the cost of mapping strings to 195-bit primes
(Map), and the cost of registering/revoking (id,pk) pairs in the DPKI itself.

The experiments found that modulo exponentiation and primality testing were expensive operations
that had a cascading impact on the overall cost of running the DPKI itself. In particular, cases where the
exponent length was larger than the length of an EVM word (32 bytes) led to large access gas costs. Thus,
operations like witness verifications (755,537.23 gwei for membership verification/1,519,279.96 gwei for
non-membership, $2.26 per membershp operation/$4.45 per non-membership operation) and adding
(810,153.32 gwei, roughly $2.43 per operation as of 4/25/2022) to the accumulator are extremely expensive
since they require multiple modulo exponentations.

In short, the RSA-based design sacrifices computational overhead for the sake of keeping the smart
contract state and witnesses constant size. However, this results in operations becoming extremely
expensive when translated and executed by the blockchain. This is particularly true of the Map procedure



which has a computational complextity of O(k2) where k is the length of the identifier. This procedure
costs on average 2,141,780,036 gwei to execute once which is approximately $6,425 per operation! As a
result, (de)registration operations on the DPKI are extremely expensive and unrealistic as a replacement
for the current X.509 system.

The main reasons why Map is so expensive to run on Ethereum is because it is cheaper to access one
EVM word (32 bytes) than one byte and at the time of the proposal, EVM bit operations were extremely
expensive. Improvements to Ethereum’s cost model to make accessing one byte cheaper as well as native
bitwise support (which has been implemented in EIP-145 [BB17]) would make the RSA-based system
cheaper to implement and execute. In the absence of those changes, the authors introduced a Merkle-tree
hash based DPKI construction that attempts to mitigate the inefficiencies of the RSA accumulator.

3.4.2 Merkle-hash based DPKI

The primary difference between the newer construction and the older, inefficient constructor, is the
universal accumulator. In the prior design, an accumulator based off the Strong RSA assumption was used
which led to expensive modulo exponentiation and primality tests. As a result, the authors opted to use
the collision-resistant hash tree based accumulators devised by Camacho et al. [CHKO12] The security of
the protocol, rather than being based on the strong RSA assumption directly, is dependent on the provable
security of the collision-resistant hash function used for the accumulators. In addition to not requiring the
more expensive operations, the accumulator is also strong which means it does not require trusted setup
like the RSA-based implementation and allows for public verification of additions/deletions through
CheckUpdate which returns 1 on a witness honestly generated by Add or Delete and the accumulator
values before and after the change. In general, the accumulator’s underlying data structure is a balanced,
binary tree, with the accumulator’s value represented as the hash of the root node and witnesses are
hash paths starting from a node leading up to the root node. This leads to constant size accumulator
values, but witnesses have O(λ log(n)) bit size where n is the number of accumulated elements. For more
information, refer to the original paper by Camacho et al.

The authors ran two sets of experiments: the first experiment tested the cost of verifying (non)
membership and CheckUpdate once the accumulator has 100,000 elements. The second experiment
tested the gas cost of registering/revoking 100,000 (i d , pk) pairs. As expected, since the size of each proof
grew logarithmically as the accumulated values grew, the gas costs also grew with a similar trend. However,
since witnesses are hash paths, sometimes the gas cost was more or less than "expected" depending on
the individual element. In terms of the DPKI itself, revoking keys were the most expensive as they required
verifying signatures, but even the most expensive revocation (2,999,214 gwei/$8.99) was considerably
cheaper than the RSA-based DPKI. Gas costs could be cheaper if the authors used KECCAK-256 which is
available as EVM opcode, but this is not NIST compliant.

Despite this, the authors found that this implementation could easily and securely be used on
Ethereum’s mainchain, particularly if developers of the project were willing to make changes (such
as having more sophisticated precompiled contracts, support for NIST compliant hash-functions, etc.)
that would allow for a DPKI to be faster and more efficient. However, one challenge that remains is
witnesses being dependent on the number of id-key pairs registered, which can become verbose over
time unless steps are taken to "reset" the accumulators from time-to-time.



4 Lattice-based blockchain DPKI ([AK18])

In 2018, Hyeongcheol An and Kwangjo Kim from the Korea Advanced Institute of Science and Technology
(KAIST) proposed Qchain, a quantum-resistant blockchain-based DPKI. This expanded on prior work of
using lattice-based cryptography on blockchains such as [BS16] while also attempting to fix the issues
with X.509 that were discussed earlier in this paper.

4.1 How QChain Works

The public key encryption scheme supported by QChain is the scheme proposed by Lyubashevsky et al.
[LPR10] which is secure against quantum computing attacks and in order to allow for concrete efficiency,
the authors used Number Theoretic Transformation (NTT) operations [GOPS13]. Rather than store
transactions in each block like cryptocurrencies or require a smart contract to manage the system, QChain
is its own blockchain system where each block stores the id-pk pairs and uses their hashes for the Merkle
hash tree structure.

4.1.1 Modified GLP Signature Scheme

The major modifications of the signature scheme used for QChain compared to the original GLP scheme
(as discussed in Section 2.4) is the use of Number Theoretic Transformation (NTT), a form of Fast Fourier
Transformation, to reduce the computation necessary for lattice-based operations.

Number Theoretic Transformation (NTT): For a polynomial g=∑1023
i=0 gi Xi ∈Rq :

N T T (g ) = ĝ =
1023∑
i=0

ĝi Xi wher e ĝi =
1023∑
j=0

γ j g jσ
i , j

where σ= 49, γ=p
σ= 7. The inverse function N T T −1 is defined below:

N T T −1(ĝ ) = g =
1023∑
i=0

ĝi Xi wher e gi = n−1γ−i
1023∑
j=0

ĝ jσi j

where n−1 mod q = 12277, γ−1 mod q = 8778, σ−1 mod q = 1254. This simplifies the matrix multiplica-
tions that are originally done in GLP signatures. The scheme, otherwise, remains unchanged. For more
information, refer to the original paper and Appendix E. [AK18]

4.1.2 QChain Algorithms

Below is an abridged list of the functions that manage QChain:

• Qchain.Setup(1λ) : Choose security parameter λ and output parameters n, q,σ = p
16/2 ≈ 2.828

based off [BLP+13]

• Qchain.KeyGen(n,σ) : Polynomial r1 and r2 are sampled from Gaussian distribution using NTT
operation in polynomial multiplication and addition.

r1,i ,r2,i ←χσ

y1,i , y2,i
R←−Rk

q



ai
R←−Rq ; âi ← N T T (ai )

r̂1,i ← N T T (r1,i ); r̂2,i ← N T T (r2,i )

ŷ1,i ← N T T (y1,i ); ŷ2,i ← N T T (y2,i )

p̂i ← r̂1,i − âi ∗ r̂2,i

t̂i ← âi ∗ r̂1,i + r̂2,i

where Rq is the polynomial ring Zq [X ]/(X n +1) where polynomial f is irreducible of degree n −1.
The public key is (âi , p̂i , t̂i ) and the secret key is (r̂1,i , r̂2,i , ŷ1,i , ŷ2,i ) for user i based off [LPR10].

• QChain.User.Setup(pki , Hr oot ) : This algorithm generates the information necessary to add to the
blockchain for id-pk registration.

Previous hash ← HBl ock0

nonce
R←− {0,1}n

pki ← User public key ∈ {0,1}n where 0 ≤ i ≤ 210

t i mest ampi ← current time

• QChain.User.Add(I Di ,User namei , ski , pki ) : This algorithm adds the user information about their
public keys onto a block in the blockchain. The algorithm works as follows:

H(I Di ), I D ← User ID

H(User namei ), User namei ← Username

(r̂1,i , r̂2,i , ŷ1,i , ŷ2,i ) ← ski

y1,i ← N T T −1(ŷ1,i ); y2,i ← N T T −1(ŷ2,i )

ci ← H(ai , y1,i + y2,i I Di ); ĉi ← N T T (c)

r1,i ← N T T −1(r̂1,i ); r2,i ← N T T −1(r̂2,i )

Si g n(I Di , ai ,r1,i ,r2,i )

The output signature value is (z1,i , z2,i , ĉi ) which is based on the modified-GLP scheme discussed in
Appendix E. They define pkInfo to be the information used for the Merkle hash tree:

pkInfo = pki ||H(I Di )||H(User namei )||t i mest ampi ||Si g n(I Di , ai ,r1,i ,r2,i )

Then they construct the Merkle hash tree using pkInfo as follows:

H i−1
2 ,..., j =

{
H i−1

2 ,...,0 = H(pkInfo) if i = odd

H i−1
2 ,...,1 = H(pkInfo) if i = even

And then the top hash value Hr oot is calculated using the hash value of the leaf nodes. The maximum
depth of the Merkle hash tree (and therefore the number of users per block) is 210 in order to restrict
complexity growth.



• QChain.User.Verify(I Di , pki ,Si g n(I Di )) : To verify the public key pki and Si g n(I Di ) of the user,
the verification algorithm works as follows:

âi , t̂i ← pki

ai ← N T T −1(âi ); ti ← N T T −1(t̂i )

z1,i , z2,i , ĉi ← Si g n(I Di )

ci ← N T T −1(ĉi )

V er i f y(I Di , z1,i , z2,i ,ci , ai , ti )

and pki and Si g n(I Di ) are public parameters. The verification algorithm is based on the modified-
GLP scheme (but is almost identical to the one in Section 2.4) described in more detail in the
Appendix E.

• QChain.Enc(pki ,m) : To encrypt message m ∈ R2, the encryption algorithm works as follows:

(âi , p̂i , t̂i ) ← pki ;

(ai , pi , ti ) ← (N T T −1(âi ), N T T −1(p̂i ), N T T −1(t̂i ));

e1,e2,e3 ←χσ;

ê1 ← N T T (e1); ê2 ← N T T (e2);

m̂ ← m ∗
⌊ q

2

⌋
;

(ĉ1, ĉ2) ← (âi ∗ ê1 + ê2, p̂i ∗ ê1 +N T T (e3 +m̂));

And the ciphertext is c = (ĉ1, ˆc2).

• QChain.Dec(ski ,c) : To decrypt a ciphertext c = (ĉ1, ĉ2), the algorithm do the following:

r̂2,i ← ski ;

(ĉ1, ĉ2) ← c

m;← N T T −1(ĉ1 ∗ r̂2 + ĉ2);

m ←Decode(m′);

Where Decode() is an error reconciliation function that simply rounds off the error of the message:

Decode(m′) :=
⌊

2

q
∗m ∗⌊q/2⌋

⌉
∗

⌊ q

2

⌋



An example exchange between QChain operators is the following: the first operator initiates the genesis
block (which is the first block, a process that is similar to other blocks except a string of all 0s is used
for the previous hash and a random number for pki ) as well as setting up the parameters for the overall
chain. Then, QChain creates another block and users run QChain.User.Setup() and QChain.User.Add()
algorithms in order to register a public key. These keys can be verified using QChain.User.Verify() which
allows users to determine if a key they are provided is authenticated or not.

The security of this protocol is based on the security of the hash scheme (which the authors stated
could be SHA-3 which has some resilience to quantum attack) and the modified GLP scheme based on the
ring-LWE problem. However, notably, there is no security proof for the protocol provided by the authors
unlike the smart contract model.

In spite of this, QChain provides many features similar to X.509 v3 while also being quantum resistant
as I will discuss in the next section.

4.2 How it Compares with X.509 v3

A primary advantage that QChain has to X.509 v3 is that it can keep offline states (except for the initiation
of the genesis block) while X.509 v3 must keep online states (particularly by a trusted third party like CA)
in order for users to verify public keys. QChain also provides non-repudiation since each block consists
of a user’s public keys and their signatures, so they cannot deny them, particularly with the immutable
nature of the blockchain.

This bears the question about how users can revoke their registrations like they could in Patsonakis et
al.’s model [PSRK17]. Although the authors stated that revocation is O(log(n)), the same as the complexity
of QChain.User.Add(), I am not fully sure how this scheme supports revocation natively. The authors
mentioned that timestamps can be used to allow id-pk pairs to "expire" but this requires additional
communications between operators or have a blockchain for a Certificate Revocation List (CRL) but these
options are not expanded upon. Perhaps if the verification algorithm simply looks for the most recent
association, this could mitigate some concerns, but this requires users to update their associations as soon
as possible to risk forgery attacks. In my opinion, this is the biggest flaw in the construction: without an
algorithm that allows for native revocation, it’s possible for an adversary to simply use a prior association
to claim they are someone else and the verification algorithm will validate that association.

QChain’s decentralized model however does prevent single points of failure, which is an inherent
problem with X.509. In particular, as long as a majority of operators remain honest, it is impossible for
malicious blocks to be approved and therefore malicious associations to registered. However, because of
the lack of revocation, much remains necessary before this can be utilized in a real-world system, unlike
the previous smart-contract based model.

5 Conclusions and Future Work

In this paper, I discussed two major DPKI systems: an Ethereum smart-contract based approach by
Patsonakis et al. ([PSRK17], [PSKR19]) and a GLP-signature based approach known as QChain by An and
Kim. While [PSRK17] provides a security proof by deriving the security of the system to the security of the
cryptographic accumulators (which in turn is based on the strong RSA assumption), this system is not
quantum resilient as the strong RSA assumption can be broken through quantum algorithms. Similarly,
given Ethereum’s history of hard forks [eth22] as a method of "upgrading" the platform, it seems unclear
how the DPKI proposed in [PSRK17] would adapt (i.e. would all associations, including those revoked,



have to be reintroduced back inito the new blockchain state, etc.).
On the other hand, QChain itself seems little more than a proof of concept for a GLP-signature based

blockchain that is purpose-built for DPKIs. In general, it does not seem clear how the immutable property
of QChain allows for users to revoke associations and since there is no security model for the blockchain
itself, there is a possibility for non-quantum based adversaries to trick the system into accepting malicious
registrations or for an adversary to deceive users by using a non-current association of a public key.
However, in general, it seems that the DPKI systems highlighted in this paper, although suffering from
faults on their own, seem to solve the trusted third party and single points of failure issues that X.509
currently has and are more scalable as a result.

These approaches are just a stepping stone given that Ethereum, the most likely platform for a complex
DPKI system, was only founded in 2015 and is constantly improving. As a result, I have proposed some
open questions below to help spur the development of decentralized public key infrastructures:

5.1 Open Questions

• Does the immutable property of blockchains make it impossible to create a purpose-built
blockchain for systems, like DPKIs, where revocability is aa integral part? As seen in [PSRK17] and
by the muddled nature of QChain, it seems hard to create blockchains solely for DPKIs and instead
researchers have to rely on smart contracts that run primitives like cryptographic accumulators
which allow for revocation properties. However, future work could investigate this further to see if
there are optimizations that can be made so that revocations run "on chain" rather than through a
smart contract medium.

• How will hard forks and splits in blockchains affect DPKIs? In 2016, Ethereum Classic was split
from Ethereum as a result of a vote to delete the theft of $50 million worth of Ethereum from
DAO, a decentralized venture capital fund. [Lei17] This resulted in Ethereum Classic retaining the
blockchain of Ethereum up to that point, including the theft, whereas Ethereum itself essentially
erased the theft. If a DPKI system was implemented prior to a situation like this, it would result in
duplicated DPKIs which could be used maliciously if the community for one of the new blockchains
didn’t care to maintain it. In general, a split situation like this leads to greater consideration about
how to maintain authentication systems built on decentralized systems which are constantly being
developed. Future work could explore these situations, especially for a system as important as
public key infrastructure.
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A Standard Definitions

Notation: Unless otherwise stated, λ denotes the security parameter and negl(·) refers to a function that is
negligible by some parameter.

Definition A.1 (Strong RSA Assumption from [PSRK17]). For any p.p.t. adversary A,

Pr[n ←KeyGen(1λ); x ←Z∗
n ; (y,e) ←A(n, x) : ye = x mod n] = negl(λ)

where n = pq and p, q are safe primes.

Definition A.2 (2-Universal Hash Function Family from [PSRK17]). Let U = { f | f : X → Y } be a family
of functions. U is a 2-Universal Hash Function Family if, for all x1, x2 ∈ X with x1 ̸= x2 and for all y1, y2 ∈ Y ,
Pr f ∈U [ f (x1) = y1 ∧ f (x2) = y2] = ( 1

|Y | )
2.

Definition A.3 (Pseudorandom Generator). Let G : {0,1}k → {0,1}p(k) be a deterministic polynomial
time algorithm and p(·) be a polynomial in some parameter k. G is a pseudorandom generator if, for any
p.p.t algorithm D

|Pr[D(r ) = 1]−Pr[D(G(s)) = 1]| ≤ negl(k)

where r is a random string chosen uniformly at random from {0,1}p(k) and s, the seed, being chosen
uniformly at random from {0,1}k .



Definition A.4 (Collision-resistant Hash Function Family) A family of functions hk : {0,1}m(k) → {0,1}l (k)

generated by some algorithm G is a family of collision resistant hash functions if |m(k)| > |l (k)| for any k
(compressing the input string), and every hk can be computed within polynomial time given k but for any
p.p.t algorithm A:

Pr [k ←G(1n), (x1, x2) ← A(k,1n) s.t . x1 ̸= x2 but hk (x1) = hk (x2)] < negl(n)

B Lattice-based Problems

B.1 Summary of LWE problem from [P+16]

LWE is defined by positive integers n and q , and an error distribution χ over Z. χ is usually considered a
discrete Gaussian of width αq where α< 1.

For a vector s ∈Zn
q , known as the LWE secret, the LWE distribution As,χ over Zn

q × Zq is sampled by
choosing an a ∈Zn

q uniformally at random, choosing e ←χ and outputting (a,b = 〈s, a〉+e mod q).
For cryptography, the Decision-LWEn,q,χ,m is commonly used. The problem is defined as follows:

Decision-LWEn,q,χ,m- Given m independent samples (ai ,bi ) ∈ Zn
q ×Zq where every sample is dis-

tributed according to one of the following: (1) As,χ for a uniformly random s ∈Zn
q (fixed for all samples) or

(2) the uniform distribution, and the goal is to distinguish which is the case with non-negligible advantage.

For more information, refer to the original paper by Regev [Reg09] or the survey conducted by Peikert
et al. [P+16]

B.2 Summary of Ring-LWE problem from [P+16]

Ring-LWE is defined by a ring R of degree n over Z, a positive integer modulus q defining the quotient
ring Rq = R/qR, and an error distribution χ over R. Typically, R is a cyclotomic ring and χ is a discretized
Gaussian in the canonical embedding of R.

For an s ∈ Rq , known as the Ring-LWE secrete, the ring-LWE distribution As,χ over Rq ×Rq is sampled
by choosing a ∈ Rq uniformally at random, choosing e ←χ, and outputting (a,b = s ·a +e mod q).

The Decision-R-LWEq,χ,m problem is described below:

Decision-R-LWEq,χ,m- Given m independent samples (ai ,bi ) ∈ Rq ×Rq where every sample is dis-
tributed according to one of the following: (1) As,χ for a uniformly random s ∈ Rq (fixed for all samples) or
(2) the uniform distribution and the goal is to distinguish which is the case with non-negligible advantage.

For more infromation, see the original papers by Lyubaskevsky et al. [LPR10] and [LPR13] as well as
the survey done by Peikert et al. [P+16]

C Definition of Public-state, Universal Additive Cryptographic Accumulators
from [PSRK17]

Definition 1. (Definition 4.1 from [PSRK17]) Public-state, additive, universal accumulators. Let D be the
domain of the accumulator’s elements and X , the current accumulator set. The accumulator consists of
the following algorithms (which aside from KeyGen, require only the public key to use):



• KeyGen: generates the public-private key pair (pk, sk) and outputs the public key pk. Run by
trusted party T .

• InitAcc: outputs the initial accumulator value c0. Run by trusted party Tacc .

• Add: Given x to be added to the accumulator set and the accumulator value c, it outputs the new
accumulator value c ′ and the membership witness for x.

• MemWitGen: outputs a membership witness for x given the accumulator value c.

• NonMemWitGen: outputs a non-membership witness for x given the accumulator value c.

• UpdMemWit: After Add(·) is run for an element y , this will provide an updated membership witness
for a pre-existing element x.

• UpdMemNonWit: Similar to UpdMemWit but with non-membership witnesses.

• VerifyMem: Verifies whether a given membership witness W for a given element x is honestly
produced.

• VerifyNonMem: Verifies whether a given non-membership witness W for a given element x is
honestly produced.

The accumulator is considered correct VerifyMem and VerifyNonMem only return 1 if given an
honestly produced witness and 0 otherwise. The accumulator is also considered secure if no PPT adversary
can forge a valid membership/non-membership witness.

D Map Procedure from [PSRK17]

Unlike [GHR99], the authors employ a deterministic mapping algorithm. They use a pseudorandom
generator G : {0,1}k → {0,1}p(k) where p(k) is polynomial in k and a labeled collision-resistant hash
function h : {0,1}∗× {0,1}∗ → {0,1}k which is modeled as a Random Oracle.

The procedure works as follows: first pick two labels l10, l1 from {0,1}∗ which remain the same for
every run of the algorithm. Then given input z ∈ {0,1}∗, first compute h(l0, z) and then G(h(l1, z)). Then, it
samples elements from the set {x ∈ {0,1}3k : f (x) = h(l0, z)} using randomness G(h(l1, z)) and stops when
a prime number is found. The authors proved that M ap outputs a prime number, except with negligible
probability, and assuming the existence of psuedorandom generators and random oracles. Similarly, they
proved that Map is collision-resistant as long as h was collision-resistant.

E Modified-GLP Signature Scheme from [AK18]

Below is the signature scheme used by [AK18] for QChain. Note that this is essentially the GLP signature
scheme ([GLP12]) but uses Number Theoretic Transformations (NTT) to speed up calculations. For more
information on NTT, refer to the section on QChain, the original QChain paper ([AK18]), and the original
paper on NTT ([GOPS13]).



Algorithm 2 Modified-GLP Signature Scheme from [AK18]

Signing Key: r1,r2
R←−χσ.

Verification Key: a
R←−Rq , â ← N T T (a), r̂1 ← N T T (r1), r̂2 ← N T T (r2), t̂ ← âr̂1 + r̂2

Hash function: H : {0,1}∗ → Dn
32

Sign(µ, a,r1,r2) :

1. y1, y2
R←−Rk

q ;
2. c ← H(ay1 + y2,µ);
3. ĉ ← N T T (c);
3. ẑ1 ← r̂1 ∗ ĉ +N T T (y1);
4. ẑ2 ← r̂2 ∗ ĉ +N T T (y2);
5. z1 ← N T T −1(ẑ1);
6. z2 ← N T T −1(ẑ2);

if z1 ̸∈Rk−32
q or z2 ̸∈Rk−32

q then
Return to step 1;

else
return (z1, z2,c);

end if

Verify(µ, z1, z2,c, a, t ) :
if z1, z2 ∈Rk−32

q then
c ̸= H(az1 + z2 − tc,µ);
return reject;

else
return success;

end if

For more information, see the QChain paper ([AK18]).
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